​Ученый Томского политехнического университета Рауль Родригес и его коллеги из Германии и Литвы первыми в мире предложили, как с помощью оксида графена — по сути, обычного графита, как в карандашах, только окисленного — сделать поверхность любого материала пригодной для иммобилизации живых клеток.

С помощью устройств с такими покрытиями можно будет обнаруживать и исследовать отдельные живые клетки, в том числе опасные микроорганизмы, раковые клетки и опасные вещества в организме человека. В будущем на основе этой технологии можно будет создавать гибкие диагностические устройства, вживляемые под кожу. Результаты исследования опубликованы в научном журнале Sensors and Actuators B: Chemical (IF 5,4; Q 1).

Научная работа проводится учеными Томского политехнического университета, Университета Вильнюса, Центра физических технологий Вильнюса (Литва) и Технологического университета Хемница (Германия).

"Врачи до сих пор пытаются найти ответ на вопрос, почему клетки рака метастазируют. Изучение коммуникации клеток в процессе их образования - это, возможно, как раз и есть ответ на данный вопрос. Для этого нужно суметь отличить поведение клетки в "коллективе" от поведения изолированной клетки", - рассказывает профессор кафедры лазерной и световой техники ТПУ Рауль Родригес.

Технология, разработанная томскими политехниками и их коллегами, позволяет контролировать колонии клеток и отделять интересующие ученых клетки от всех остальных. Причем, она станет гораздо дешевле существующих аналогов.

"Сейчас для изучения отдельной клетки используют более дорогую технологию - так называемые оптические пинцеты, представляющие собой сложную установку, которая позволяет с помощью лазерного пучка выбирать, перемещать и анализировать отдельную клетку. Открытый нами метод не предполагает использования дополнительного оборудования - нужно лишь покрыть любую поверхность оксидом графена (соединения углерода с кислородсодержащими группами)", - объясняет Рауль Родригес.

Он уточняет, что исследование коммуникации и взаимодействия клеток сейчас представляет важность для многих направлений в медицине. Та же технология может помочь в разработке биосенсоров.

Биосенсоры - это аналитические устройства, в которых чувствительный слой, содержащий биологический материал, реагирует на присутствие определяемого компонента и генерирует электрический сигнал, функционально связанный с наличием и концентрацией этого вещества. Биоматериалом могут служить ферменты, ткани, бактерии, дрожжи, антигены/антитела, липосомы, органеллы, рецепторы, ДНК, а также клетки, которые иммобилизованы на физических датчиках. Сегодня биосенсоры уже применяются в области медицины, биотехнологий, пищевой промышленности и экологии.

"При создании биосенсоров существует та же проблема, что и при создании имплантатов, которые вживляют в организм человека. В имплантате взаимодействие клеток с его поверхностью определяется свойствами смачиваемости. Смачиваемая поверхность позволяет живым клеткам лучше закрепляться на биоимплантатах, размножаться и так далее. Поверхность биосенсора тоже должна быть хорошо смачиваемой для того, чтобы мы могли обеспечить присоединение клеток или бактерий к сенсору", - говорит профессор Родригес.

Понять, что такое смачиваемая - гидрофильная - поверхность, объясняет ученый, можно на примере простой воды. Когда капельки воды падают на поверхность материала и растекаются по ней, значит, взаимодействие между каплей и поверхностью высокое и материал гидрофильный. А если капельки воды собираются в шарики, то взаимодействие молекул воды между собой больше, чем с поверхностью, и это говорит нам о том, что материал гидрофобный.


"С помощью простой технологии с использованием оксида графена мы можем, по сути, любой материал сделать гидрофильным, а значит, пригодным для создания недорогих биосенсоров", - резюмирует профессор ТПУ.


Фото: визуализация процесса сушки суспензий дрожжевых клеток, покрытых на поверхности модифицированными графеновыми подложками. Изображения были сделаны до (1-й ряд) и после (2-й и 3-й ряды) испарения воды. 

В своей работе ученые продемонстрировали этот эффект на примере обычных дрожжевых клеток, осажденных на нескольких произвольных подложках из стекла, кремния и других материалов, покрытых оксидом графена. Результаты исследования показали, что клетки хорошо фиксируются на модифицированных подложках. Такие усовершенствованные поверхности приводили к появлению областей, где можно было наблюдать одиночные клетки. Образно говоря, клетки попадали в "ловушки" и не могли собраться вместе, как это обычно происходит на поверхности. Используя это свойство, можно было бы изучить, как клетка ведет себя в изолированном состоянии, и сравнить ее поведение с поведением в "обществе" других ее "сородичей".

Для производства биосенсора предполагается создавать электрические контакты на том же самом покрытии. В другой своей работе, при разработке медицинских "электронных татуировок", ученые рисуют на подложке, обработанной оксидом графена, некое подобие электросхемы. При воздействии лазером оксид графена превращается в проводящий материал - восстановленный оксид графена (rGO). А в дальнейшем с использованием оксида графена можно будет производить гибкую электронику, встраиваемую прямо под кожу пациента.

"Кто знает, возможно в будущем именно такая техника сможет прямо на дому диагностировать на ранних стадиях различные заболевания", - заключают ученые.

Похожие новости

  • 09/01/2017

    ТГУ создает 3D-фильм о раскопках курганов в тувинской Долине царей

    ​Сотрудники Томского госуниверситета (ТГУ) планируют в 2017 году выпустить фильм в 3D об археологических раскопках в тувинской Долине царей, сообщила РИА Томск завлабораторией "Артефакт" Ольга Зайцева.
    581
  • 04/10/2016

    В Airbus Safran Launchers заинтересовались созданным в Томске наноматериалом

    ​Airbus Safran Launchers (совместное предприятие авиакосмического концерна Airbus Group и французской корпорации Safran) заинтересовалась разработанной в Томском госуниверситете технологией получения наноматериала - легкого, как алюминий, и прочного, как сталь, сообщил завлабораторией высокоэнергетических и специальных материалов ВУЗа Александр Ворожцов.
    785
  • 07/07/2016

    В ТПУ разработали универсальный порошок для дактилоскопии

    ​Универсальный порошок для дактилоскопии разработали в Томском политехническом университете. Авторами идеи стали студенты Энергетического института ТПУ. Основные преимущества новой разработки - получение более четкого следа отпечатка и универсальность.
    873
  • 28/06/2016

    3D-технологии завоевывают мир

    ​Вслед за автомобилями с автопилотом на дороги выходят самоуправляемые маршрутки. Первенцем новой концепции стал микроавтобус "Olli", созданный компанией Local Motors в сотрудничестве с IBM.  Как сообщает 3Dtoday, Local Motors наиболее известна в качестве первого производителя 3D-печатных автомобилей, а IBM предоставила необходимое аппаратное и программное обеспечение для интеграции 3D-печатного транспорта в облачный искусственный интеллект IBM Watson.
    1108
  • 03/07/2017

    Абитуриенты Томского госуниверситета создали бота для Telegram, сообщающего результаты ЕГЭ

    ​Абитуриенты Владимир Лебедев и Денис Шарапов подали документы в ТГУ одними из первых. Для поступления они выбрали недавно созданный Институт прикладной математики и компьютерных наук. Такой выбор не был спонтанным - ребята давно уже занимаются программированием, а примерно месяц назад они создали бота для Телеграм, который сообщал о результатах ЕГЭ.
    313
  • 02/06/2017

    Алтайский госуниверситет встречает молодых ученых - участников Всероссийского конкурса СНО

    ​1 июня Алтайский государственный университет встречает участников III Всероссийского конкурса студенческих научных обществ и конструкторских бюро, в котором примут участие более 60 студенческих научных объединений со всей России.
    515
  • 11/01/2017

    Топливный бак для водородного транспорта сохранит атмосферу Земли

    Массовый перевод автомобилей на водородное топливо позволит сократить эмиссию углекислого газа в атмосферу Земли - ведь при сжигании водорода образуется вода.  Однако широкого распространения "водородомобили" пока получить не могут, прежде всего, из-за отсутствия безопасных и удобных способов хранения водорода в топливной системе транспортного средства.
    655
  • 15/09/2017

    Метеорологи ТГУ используют новое оборудование

    ​На крыше шестого корпуса ТГУ установили автоматический измерительный комплекс, разработанный и подаренный университету сотрудниками Института мониторинга климатических и экологических систем СО РАН. Аппаратура без участия оператора производит непрерывное измерение и регистрацию многих физических параметров атмосферы: атмосферного давления, температуры и влажности воздуха, скорости горизонтального и вертикального перемещений воздуха, напряженности электрического поля и других.
    182
  • 06/07/2016

    В Томском политехе разработали агроробота

    Ученые Юргинского технологического института (ЮТИ) Томского политехнического университета вместе со студентами разрабатывают агроробота, который сможет пахать землю, обрабатывать растения от вредителей и косить траву.
    940
  • 07/08/2017

    Магистрант ТПУ будет разрабатывать алгоритмы для работы с большими данными

    ​Абитуриент Томского политехнического университета Алексей Кульневич - выпускник Северного (Арктического) федерального университета имени имени М. В. Ломоносова (г. Архангельск) - стал победителем олимпиады "Прорыв".
    238