Молодой ученый из Исследовательской школы физики высокоэнергетических процессов Томского политеха Дарья Дерусова работает над созданием системы, объединяющей три метода неразрушающего контроля — вибрационный, резонансный ультразвуковой и тепловой. Такой подход интересен для авиационной и автомобильной промышленности, ведь позволит проверять качество сложных и больших по размеру изделий из композитных материалов с учетом их физических свойств. Проект молодого ученого поддержал Российский научный фонд, грант рассчитан на два года — до 2020-го.

 

В лаборатории контроля качества материалов и конструкций Института физики прочности и материаловедения СО РАН / Автор: Владимир Белобородов

Композитные, то есть многокомпонентные, материалы получили широкое распространение именно в авиационной промышленности и автомобилестроении, так как по своим качественным характеристикам они не уступают металлам, но при этом гораздо легче. Но за счет этой самой многокомпонентности качество таких материалов сложнее контролировать. В материале могут быть скрыты совсем небольшие дефекты — расслоения, трещины, ударные повреждения. Их размер буквально несколько миллиметров. Эксплуатация изделий с такими дефектами, например, в авиации может закончиться катастрофой.

«Каждый год появляются все новые композитные материалы, и они бросают вызов методам неразрушающего контроля. Особую сложность и важность представляют стыки между материалами», — говорит руководитель проекта, младший научный сотрудник Исследовательской школы физики высокоэнергетических процессов ТПУ Дарья Дерусова.

Сегодня на производстве широко применяются классический ультразвуковой метод контроля и рентген.

«Последний самый точный, но им нельзя контролировать крупногабаритные объекты, каких в авиации много. А ультразвуковые установки затрачивают киловатты электроэнергии для стимуляции материалов моночастотным акустическим сигналом. Самым перспективным современным методом нам видится лазерная виброметрия в сочетании с резонансной стимуляцией дефектов. Такой подход позволяет активировать локальные резонансные вибрации в области повреждений, что также приводит к существенному увеличению температуры в этой зоне. Инфракрасная камера в свою очередь позволит зарегистрировать изменения температуры и дополнить информацию о качестве изделия.

В результате мы рассчитываем создать лабораторную установку, которая позволит контролировать большие и сложные по форме объекты. При этом она будет потреблять в разы меньше электроэнергии, чем мощные ультразвуковые установки.

Разрабатываемый подход будет альтернативой существующим методам неразрушающего контроля авиационной и машиностроительной отрасли», — говорит молодой ученый.

Установка объединит такие элементы: резонансная ультразвуковая стимуляция с использованием пьезоэлектрических преобразователей, сканирующий лазерный Допплеровский виброметр и инфракрасная камера со специализированным программным обеспечением. 

«Суть системы заключается в том, что объект контроля — материал — подвергается акустической стимуляции в широком диапазоне частот. Упругая волна создает вибрации как самого материала, так и его неоднородностей. Резонансная частота вибраций стенок дефектов отличается от резонансных частот объекта, — что может быть обнаружено с помощью сканирующего виброметра. Кроме того, из-за интенсивных резонансных вибраций дефектные области локально нагреваются. Эти изменения температуры на поверхности объектов мы регистрируем с помощью инфракрасной камеры. Данные контроля качества позволяют выявить сам дефект, его расположение, форму и размер», — поясняет Дарья Дерусова.

В рамках этого проекта политехники сотрудничают с коллегами из Института физики прочности и материаловедения СО РАН (Лаборатория контроля качества материалов и конструкций). А образцы материалов для отработки предложенных технологий политехникам предоставляет Сибирский научно-исследовательский институт авиации имени С.А. Чаплыгина (СибНИА, Новосибирск), Университета Л'Акуила (Италия) и Symbiosis Institute of Technology (Индия). Кстати, сейчас в СибНИА разрабатывают новый самолет, модель состоит целиком из композиционных материалов. Для контроля качества этих материалов ученые ТПУ создали тепловой дефектоскоп.

В результате сотрудничества с итальянскими учеными был создан новый прочный композит на основе полимерных и льняных волокон.

Похожие новости

  • 17/08/2017

    Космонавты МКС выведут на орбиту напечатанный на 3D-принтере российский спутник

    ​Российские космонавты 17 августа планируют выйти с МКС в открытый космос, в том числе чтобы запустить на орбиту Земли миниатюрный трехкилограммовый аппарат, единственная функция которого — вращаться вокруг Земли и подавать сигналы с орбиты.
    639
  • 08/05/2018

    Томские ученые разработали быстрый способ печати имплантов нового поколения

    Ученые лаборатории медицинских материалов ТГУ, в которую входят сотрудники университета, ИФПМ СО РАН и НИИ онкологии ТНИМЦ, работают над созданием прямого способа печати имплантов для замены утраченных фрагментов кости.
    660
  • 04/10/2016

    В Томске создадут «рой» малых спутников в помощь сельскому хозяйству

    ​Томский политехнический университет (ТПУ) и томский Институт физики прочности и материаловедения СО РАН (ИФПМ СО РАН) выступят одними из инициаторов проекта по созданию группировки малых космических аппаратов для прорывных технологий в сфере сельского хозяйства, который планируется запустить в 2017 году.
    1708
  • 05/01/2017

    Первый наноспутник, напечатанный на 3D-принтере, запустят в 2017 году

    Первый отечественный наноспутник с напечатанными на 3D-принтере элементами корпуса будет запущен с Международной космической станции (МКС) в 2017 году, сообщил руководитель стратегической академической единицы "Космическое материаловедение" в Томском политехническом университете (ТПУ) Евгений Колубаев.
    904
  • 28/04/2017

    Томские ученые готовы поставить в Милан уникальную машину для имплантатов

    ​Ученые томского Института сильноточной электроники (ИСЭ) СО РАН планируют до конца 2017 года поставить в Миланский политехнический университет уникальную машину для обработки поверхностей. Она может применяться, как в изготовлении медицинских имплантатов, так и в машиностроительной отрасли, сообщил ученый секретарь Томского научного центра Алексей Марков.
    953
  • 24/07/2017

    Начинаются подготовительные работы к запуску спутника «Томск-ТПУ-120» в открытый космос

    ​​24 июля экипаж российского сегмента Международной космической станции (МКС) проверит работоспособность спутника "Томск-ТПУ-120" перед запуском аппарата в открытый космос. Сам запуск запланирован на 17 августа.
    988
  • 12/07/2017

    Магистранты ТПУ будут работать над созданием нового космического корабля

    ​В Томском политехническом университете идет первый набор студентов на новую магистерскую программу «Технологии космического материаловедения», запущенную совместно с Ракетно-космической корпорацией «Энергия» (РКК «Энергия») и Институтом физики прочности и материаловедения СО РАН (ИФПМ СО РАН).
    824
  • 04/01/2017

    Экстремальная заявка: зачем в ТПУ открыли инжиниринговый центр

    К концу 2016 года у Томского политехнического появился полноценный инжиниринговый центр: в строй был введен последний из трех комплексов — Международный центр испытаний материалов для работы в экстремальных условиях.
    1221
  • 11/08/2016

    В ТГУ создан консорциум по созданию костных имплантатов

    ​Томский государственный университет и ИФПМ СО РАН, которые занимаются созданием новых материалов, инициировали создание сетевого центра реконструкции дефектов черепно-лицевой области, сообщает пресс-служба ТГУ.
    1874
  • 25/05/2017

    «Физика рака» — ученые обсуждают в Томске «раковое цунами», накрывающее человечество

    На Международной конференции «Физика рака: трансдисциплинарные проблемы и клинические применения», которая проходит в эти дни в МКЦ ТПУ, прозвучит почти 50 пленарных докладов ученых России и зарубежных стран — США, Израиля, Франции, Германии, Китая, Греции, Италии, Словении, Сербии.
    1362