Ученый Томского политехнического университета с коллегами из Германии и Венесуэлы доказал уязвимость двумерного полупроводника - селенида галлия - на воздухе. Это открытие позволит создавать сверхпроводимую наноэлектронику на основе селенида галлия, чего ранее не удавалось сделать ни одному научному коллективу в мире.

Результаты исследования опубликованы в журнале Semiconductor Science and Technology (IF 2.305, Q2).

Одна из перспективных областей современного материаловедения - исследование двумерных материалов - тонких пленок, состоящих из одного или нескольких атомных слоев. Двумерные материалы, благодаря своей высочайшей электропроводности и прочности, могут стать основой для современной электроники сверхмалого размера (наноэлектроники). Для применения в оптике в основе такой электроники должны быть новые материалы, способные "создавать" большие потоки электронов при облучении светом. Одним из двумерных полупроводников, способных наиболее эффективно справляться с этой задачей, является селенид галлия.

"Некоторые зарубежные научные коллективы пытались создать электронные устройства на основе селенида галлия. Однако, несмотря на широкие теоретические исследования этого материала, которые публиковались в крупных научных изданиях, состояние этого материала в реальных устройствах оставалась неясной", - рассказывает профессор кафедры лазерной и световой техники ТПУРауль Родригес.

Научному коллективу, в который входит Рауль Родригес, удалось выяснить, почему. Они исследовали селенид галлия методами спектроскопии комбинационного рассеяния света и XPS, которые позволили подтвердить наличие химических связей между галлием и кислородом. Отсутствие фотолюминесценции у окисленного вещества также подтвердило формирование оксида. Другими словами, ученые выяснили, что при контакте с воздухом селенид галлия быстро окисляется и теряет свою электрическую проводимость, необходимую для создания наноэлектронных устройств.

"Наши результаты показывают, что окисление двумерного селенида галлия является быстрым процессом. Материал достигает окисленного состояния почти сразу после контакта с воздухом. Дальнейшее изучение чувствительности селенида галлия к окислению позволит предложить решения для его защиты и сохранения оптоэлектронных свойств", - подчеркивают авторы статьи.

По словам профессора Родригеса, для того, чтобы селенид галлия не потерял свои уникальные свойства, он должен находиться в вакууме или инертной среде. Например, он может использоваться в капсулированных устройствах, которые изготавливаются в вакууме, после чего покрываются защитным слоем, ограничивающим проникновение воздуха.

Таким методом могут быть изготовлены новейшая оптоэлектроника, детекторы, источники света, солнечные батареи. При сверхмалых размерах такие устройства будут обладать очень высокой квантовой эффективностью - то есть способностью "создавать" большие потоки электронов при малом внешнем воздействии.

Похожие новости

  • 19/08/2016

    В МИСиС разработали супермагнит для реализации проектов в Арктике и в космосе

    ​Ученые Национального технологического исследовательского университета МИСиС разработал супермагнит, который сохраняет свои свойства при экстремальных условиях и может использоваться, как в Арктике, так и в космосе.
    631
  • 12/10/2016

    Томские ученые испытывают новые стекла для космических спутников

    ​Сотрудники НИИ ПММ ТГУ проводят испытания покрытий, созданных для защиты иллюминаторов, линз и зеркал космических аппаратов от эрозии. При помощи легкогазовой баллистической установки экспериментальные образцы обстреливают микрочастицами порошка железа со скоростью 5-8 километров в секунду.
    911
  • 25/10/2016

    Томские ученые создадут первый в РФ томограф для изучения сложнейших объектов

    ​Ученые Томского политехнического университета выиграли конкурс Федеральной целевой программы "Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014-2020 годы".
    747
  • 31/05/2016

    До конца 2018 года ТПУ завершит создание Научного парка

    ​Первая очередь Научного парка, открытая к 120-летнему юбилею Национального исследовательского Томского политехнического университета (ТПУ) стала, вероятно, самым весомым и ценным подарком вуза университетской элите, студентам, аспирантам и всем тем, кто не мыслит себя сегодня вне науки.
    871
  • 11/04/2017

    Томские ученые в ЦЕРНе сузили зону поиска частицы-посредника между видимой и невидимой Вселенной

    ​Ученым Физико-технического института Томского политехнического университета и их коллегам из Европейского центра ядерных исследований (ЦЕРН) за год удалось примерно на 25% сузить зону поиска темного фотона — частицы-посредника между видимым миром и темной материей — невидимой частью нашей Вселенной, влияющей на движение звезд и галактик.
    335
  • 14/02/2017

    Томский ученый Илья Романченко - о физике и разработках

    ​​​Томский физик Илья Романченко получил премию президента в области науки и инноваций для молодых ученых за 2016 год. В интервью РИА Томск он рассказал о том, как его работа может помочь в борьбе против раковых клеток и террористов, почему в физике недостаточно просто выучить формулы, а также на что он собирается потратить 2,5 миллиона рублей.
    1354
  • 24/10/2016

    Лазер томских ученых может служить медикам и «оборонщикам»

    Ученые ФИТ ТГУ создали лазерную систему генератор-усилительна парах стронция с большим набором длин волн и возможностью их селективного выделения. Благодаря этому установка может найти применение в разных областях – от медицины до оборонно-промышленного комплекса.
    559
  • 26/06/2017

    Как ракушка помогла материаловедам

    ​​Морская раковина - удивительно красивое творение природы. Все знают, что если прислонить ее к уху, то услышишь шум прибоя, вспомнишь о мягком песке, теплых летних днях. Но, оказывается, это еще и эталон, достичь которого стремятся ученые-материаловеды из разных стран, работающие над созданием материалов нового поколения! В течение 11 лет Томский ​научный центр Сибирского отделения РАН занимается созданием многослойных металло-интерметаллидных композиционных материалов и моделированием процессов их разрушения.
    347
  • 11/10/2016

    Алмазы, выращиваемые в ТПУ, могут быть использованы для Большого адронного коллайдера

    ​Ученые лондонского университета Роял Холлоуэй (Royal Holloway, University of London, RHUL) предложили разработать новые датчики для Большого адронного коллайдера на основе тонких алмазных пленок, выращиваемых в Томском политехническом университете.
    807
  • 25/10/2016

    Томский аспирант улучшит диагностику мощнейшего в мире синхротрона

    ​Аспирант Физико-технического института Томского политеха Артем Новокшонов вместе с учеными Научной Лаборатории DESY (Германия) работает над улучшением и тестированием новых методик диагностики электронного пучка синхротрона PETRA III - одного из мощнейших источников синхротронного и рентгеновского излучения в мире.
    672