​Ученые Томского политехнического университета разрабатывают твердооксидные топливные элементы. Батарея из нескольких таких элементов — «сердце» энергетических установок, вырабатывающих электроэнергию из углеводородного топлива или водорода.  

Для создания одного из ключевых элементов топливной ячейки — электролита — ученые ТПУ и Института сильноточной электроники​ СО РАН впервые в России предложили использовать метод магнетронного распыления. Благодаря этому методу им удалось получить очень тонкий слой электролита — не более 5 микрон. Это позволило снизить температуру, при которой происходит выработка электроэнергии, на 100 °С. А это напрямую влияет на срок службы топливных элементов: чем меньше температура, тем больше срок службы элементов.
 
 

Твердооксидные топливные элементы — это устройства для превращения энергии топлива в электрическую энергию и частично в тепловую без его сжигания. Они могут работать с углеводородным топливом, например, метаном и бутаном, а также с водородом. Топливный элемент представляет собой пластину из трех слоев: катода, анода и электролита между ними. В энергетической установке на них с разных сторон подается водород и воздух. Ионы кислорода и молекулы водорода встречаются, и между ними происходит химическая реакция, в результате которой генерируется тепло и электроэнергия. Побочный продукт реакций — чистая вода.

«У твердооксидных топливных элементов есть два серьезных преимущества. Во-первых, их электрический коэффициент полезного действия достигает 60 %, в то время как у тепловых, газотурбинных или атомных электростанций КПД на уровне 40 %. Разница существенная. Во-вторых, они экологичные. Именно поэтому на них сегодня обращают  внимание во всем мире. Однако до сих пор такие элементы широко не распространены. Ученые во всем мире ищут способы, как получать еще более эффективные, надежные и дешевые топливные элементы, чтобы приблизить их внедрение. В Томске давно развивается направление нанесения тонкопленочных покрытий методом магнетронного распыления, поэтому мы решили попробовать наносить электролит именно этим методом. И получили хороший результат: 5 микрон — это один из лучших на сегодня результатов среди других методов нанесения электролитов», — говорит доцент Научно-образовательного центра Б.П. Вейнберга ТПУ Андрей Соловьев. 

Электролит в топливном элементе играет роль барьера между молекулами водорода и кислорода. Если смешать их напрямую, может произойти взрыв. Слой электролита пропускает только нужные для безопасной реакции ионы кислорода. Это тонкая пленка из диоксида циркония, стабилизированного иттрием, и оксида церия, допированного гадолинием. Наносят электролит на керамический анод. 

«Суть метода магнетронного распыления заключается в выбивании (распылении) атомов вещества из поверхностных слоев мишени ионами рабочего газа, обычно аргона, и последующем их осаждении на подложке», — говорит инженер Исследовательской школы физики высокоэнергетических процессов ТПУ Егор Смолянский

В Томском политехе для нанесения таких покрытий создана собственная вакуумная установка магнетронного распыления. 

«Обычно твердооксидные топливные элементы работают в среднем при температуре 850 °С. Наши — при 750 °С. Это за счет тонкого электролита. Снижение рабочей температуры влияет на срок службы батареи топливных элементов, так как при меньшей температуре снижается скорость деградация материалов. Также тонкий электролит позволяет повысить плотность мощности. Это значит, что при том же размере топливного элемента можно получать больше энергии. Чтобы выяснить, насколько можно увеличить срок службы элементов, необходимо провести долгосрочные ресурсные испытания», — отмечает Егор Смолянский.

Справка: 

Томский политехнический университет выступил инициатором создания консорциума «Технологическая водородная долина». Его участники будут вести совместные исследования и разрабатывать технологии для получения водорода, его транспортировки, безопасного хранения и использования в энергетике. 

В консорциум вошли Институт катализа СО РАН, Институт проблем химической физики РАН, Институт нефтехимического синтеза РАН, Самарский государственный технический университет и Сахалинский государственный университет.

Источники

Ученые Томского политеха предложили новый метод получения тонких электролитов для "сердца" водородной энергоустановки
Energyland.info, 10/12/2020
Ученые ТПУ предложили новый метод получения тонких электролитов для "сердца" водородной энергоустановки
Служба новостей ТПУ (news.tpu.ru), 10/12/2020
Ученые нашли способ продлить срок службы водородных топливных элементов
News2world.net, 10/12/2020
Ученые нашли способ продлить срок службы водородных топливных элементов
Новости+ (vestima.ru), 10/12/2020
Ученые нашли способ продлить срок службы водородных топливных элементов
РИА Новости, 10/12/2020
Ученые нашли способ продлить срок службы водородных топливных элементов
AchtungPartisanen.ru, 10/12/2020
Ученые ТПУ разрабатывают электролизер для водородной энергетики
News-Life (news-life.pro), 10/12/2020
Ученые ТПУ разрабатывают электролизер для водородной энергетики
РИА Томск (riatomsk.ru), 10/12/2020
Томские ученые смогли снизить температуру выработки энергии в водородной энергоустановке на 100 градусов
Томский обзор (obzor.city), 10/12/2020
Томские ученые предложили тонкие электролиты для водородной энергетики
РИА Сибирь (ria-sibir.ru), 10/12/2020
Ученые ТПУ предложили новый метод получения тонких электролитов для "сердца" водородной энергоустановки
Российское атомное сообщество (atomic-energy.ru), 10/12/2020
Ученые нашли способ продлить срок службы водородных топливных элементов
Forbes Kazakhstan (forbes.kz), 10/12/2020
В ТПУ нашли способ продлить срок эксплуатации водородных энергоустановок.
Advis.ru, 10/12/2020
В ТПУ нашли способ продлить срок эксплуатации водородных энергоустановок
ТАСС, 10/12/2020
Новый метод получения тонких электролитов для "сердца" водородной энергоустановки
Научная Россия (scientificrussia.ru), 10/12/2020
Твердооксидные топливные элементы
Netelectro.ru, 10/12/2020
Твердооксидные топливные элементы
News-Life (news-life.pro), 10/12/2020
Твердооксидные топливные элементы
News24.pro, 10/12/2020
Ученые нашли способ продлить срок службы водородных топливных элементов
Iislam.kz, 12/12/2020
В Томске придумали, как продлить работу сердца водородной энергоустановки
Красноярский медицинский портал (krasgmu.net), 13/12/2020

Похожие новости

  • 28/10/2020

    Российские ученые нашли экологически чистую замену углю

    Улучшить свойства доступных видов биотоплива смогли ученые Томского политехнического университета (ТПУ). По словам авторов, им удалось получить из торфа и отрубей экологически чистое топливо, не уступающее по эффективности бурому углю.
    861
  • 16/12/2020

    Новосибирские ученые первыми в мире получили данные о механизме прохождения ценных промышленных газов через перспективный пористый материал ZIF-8

    ​​Ученые из лаборатории структуры и функциональных свойств молекулярных систем НГУ, сотрудники Института катализа СО РАН Даниил Колоколов, Александр Художитков и Александр Степанов совместно с другими исследователями провели работу по экспериментальному измерению диффузии легких углеводородов.
    554
  • 01/12/2020

    Нужда заставляет: проректор ТПУ о реальности водородной энергетики

    Технологическая водородная долина, начавшая "разрастаться" в России по инициативе Томского политеха (ТПУ), может сделать водородную энергетику более конкурентоспособной. Основной аргумент скептиков – высокая стоимость такой энергии, хотя сырья бесконечно много – та же вода, природный газ.
    314
  • 15/12/2020

    Масштаб мысли: какие технологии ТПУ перевернут водородную энергетику

    ​​​Ученые и представители национальных компаний в декабре соберутся на конференции "Водород. Технологии. Будущее". Ее проводит Томский политех (ТПУ) как один из "двигателей" водородной энергетики в России, комплексно исследующий ее с 2000-х годов.
    510
  • 23/12/2020

    Губернаторы трех регионов открыли первую конференцию «Водород. Технологии. Будущее»

    ​На платформе Томского политехнического университета открылась первая научно-практическая конференция «Водород. Технологии. Будущее». Ее дистанционно открыли губернаторы Томской, Сахалинской, Самарской областей и заместители глав администраций Новосибирской области и Санкт-Петербурга, а также представители Минпромторга и Минобрнауки России.
    456
  • 13/10/2020

    Физики ТГУ улучшили сплавы с памятью формы для космоса и Арктики

    ​Сотрудники лаборатории физики высокопрочных кристаллов ТГУ первыми в мире получили структуру сплавов, обеспечивающую им особую способность к деформации и восстановлению исходной формы до 15 процентов.
    543
  • 26/10/2020

    Более 300 ученых обсуждают в ТПУ методы получения изотопной продукции

    ​26 октября в Томском политехническом университете стартовала VI Международная научная конференция молодых ученых, аспирантов и студентов «Изотопы: технологии, материалы и применение». В конференции принимают участие более 300 молодых ученых, аспирантов и студентов из России, Казахстана, Чехии, Китая, Беларуси.
    636
  • 10/11/2020

    Грантовые истории: молодые ученые рассказывают о своих научных проектах

    ​​​В нашем материале – о том, какими исследовательскими проектами занимаются молодые ученые и как им в этом помогают гранты. Поглотитель ультрафиолета Константин Липин из Чувашского государственного университета занимается разработкой способных поглощать ультрафиолет веществ – фотостабилизаторов.
    385
  • 07/11/2019

    Более 30 студентов и аспирантов ТПУ получили стипендии Президента и Правительства РФ

    ​В числе стипендиатов Президента РФ — четыре студента и семь аспирантов Томского политехнического университета. Стипендию Правительства России будут получать 13 студентов и семь аспирантов. В течение учебного года, помимо основной, они ежемесячно будут получать дополнительную стипендию.
    1104
  • 29/04/2019

    Команда российских ученых выдвинула гипотезу о существовании жизни на Венере

    Ученые из Института космических исследований РАН, Института катализа имени Г. К. Борескова СО РАН и НГУ выдвинули гипотезу о существовании жизни на Венере. К таким выводам исследователей привела новая обработка панорамных изображений поверхности Венеры, полученных советскими аппаратами «Венера-9», «Венера-10», «Венера-13» и «Венера-14» в 1975—1982 годах.
    1990