​Ученые Томского политехнического университета совместно с коллегами из Института сильноточной электроники СО РАН исследуют характеристики излучения «убегающих» электронов, образующихся при термоядерном синтезе. Цель работы — изучить спектрально-угловые характеристики излучения электронов в различных радиаторах и разработать детектор для их надежной идентификации.
 
 
 
Фото: микротрон ТПУ.
 
Усилия многих ученых мира направлены сейчас на разработку новых источников энергии, основанных на слиянии ядер легких элементов, — так называемых термоядерных источников энергии. Для выработки энергии есть два подхода. В первом используется большая камера, в которой циркулирующим током нагревается плазма до температуры в сотни миллионов градусов (токамак). Происходит реакция слияния, и продукты этих реакций уносят энергию, которая потом перерабатывается в электричество. Другой подход — лазерная технология, которая позволяет получить термоядерную реакцию за счет синхронизации пучков нескольких десятков лазеров в одной точке, где помещается капсула, содержащая термоядерное «топливо».
 
«Все подходы основывались на известном теоретическом выводе, что продуктами термоядерной реакции являются нейтроны и альфа-частицы, которые взаимодействуют с передней стенкой реактора. Но выяснилось, что там присутствуют и электроны с очень большой энергией. Они могут нести дополнительную радиационную нагрузку на стенку, что приведет к ее преждевременному разрушению. Такие электроны, получившие название "убегающие", сейчас интенсивно исследуются», — говорит профессор Исследовательской школы физики высокоэнергетических процессов ТПУ Александр Потылицын.
 
Основные исследования велись на модельных установках, которые генерируют электроны примерно той же энергии, как и на термоядерных установках. Цикл таких экспериментов провели специалисты Института сильноточной электроники на пучках электронов сильноточных ускорителей. Однако энергии этих установок недостаточно для полномасштабных исследований, поэтому эксперименты решили продолжить на ускорителях Томского политеха.
 
«Сейчас мы исследуем характеристики оптического излучения электронов на микротроне ТПУ, в котором электроны ускоряются до энергии от 3-6 МэВ. Это как раз интересующий нас энергетический диапазон, который не могут получить наши коллеги из других центров, например, в Италии или Китае. Они в основном делают уклон на сильноточные источники электронов, в которых энергия не превышает 1 МэВ. В 2019 году мы провели первые эксперименты с электронами при энергии в 6 МэВ», — поясняет Александр Потылицын.
 
Сейчас эксперименты проводятся с энергией 3 МэВ с использованием радиаторов из кварца, полиметилметакрилата и сапфира. По словам ученых, такие эксперименты еще не проводились.
 
 
 
В ходе исследования учеными впервые была продемонстрирована эффективная методика выделения черенковского излучения электронов от изотропного фонового излучения. В эксперименте выбиралась геометрия детектирования оптического излучения из кварцевого радиатора при изменении угла разворота радиатора относительно электронного пучка для различных углов наблюдения.
 
Ученые планируют продолжать эксперименты для получения информации об оптимальных характеристиках радиатора для регистрации черенковского излучения убегающих электронов для различных энергетических диапазонов до 6 МэВ. Они хотят определить коммерчески доступный материал радиатора, его радиационную стойкость, оптические характеристики, технологичность изготовления и многое другое.
 
«Конечная цель и стратегия — выработать рекомендации для создания работоспособных детекторов для планируемых и действующих термоядерных реакторов», — говорит политехник.
 
Над исследованием работают специалисты Томского политеха и Института сильноточной электроники. В следующем году ученые планируют подать заявку на грант РФФИ.
 
Результаты исследования представлены на конференции в Японии и опубликованы в журнале JETP Letters (Q1, IF: 1,494).

Похожие новости

  • 10/02/2021

    Учёные исследуют высокоэнтропийные сплавы – материалы нового класса

    Учёные и аспиранты кафедры естественнонаучных дисциплин СибГИУ (участник НОЦ «Кузбасс») в содружестве с коллегами из Института сильноточной электроники СО РАН, Самарского национального исследовательского университета имени академика С.
    613
  • 03/02/2021

    Программа мероприятий, посвященных Дню российской науки

    ​Ежегодно 8 февраля российское научное сообщество отмечает свой профессиональный праздник — День российской науки. ​ По традиции к этой дате в институтах и вузах, находящихся под научно-методическим руководством Сибирского отделения РАН, приурочены научно-популярные мероприятия: дни открытых дверей, экскурсии, лекции и так далее.
    1539
  • 10/11/2020

    Грантовые истории: молодые ученые рассказывают о своих научных проектах

    ​​​В нашем материале – о том, какими исследовательскими проектами занимаются молодые ученые и как им в этом помогают гранты. Поглотитель ультрафиолета Константин Липин из Чувашского государственного университета занимается разработкой способных поглощать ультрафиолет веществ – фотостабилизаторов.
    539
  • 15/12/2020

    Масштаб мысли: какие технологии ТПУ перевернут водородную энергетику

    ​​​Ученые и представители национальных компаний в декабре соберутся на конференции "Водород. Технологии. Будущее". Ее проводит Томский политех (ТПУ) как один из "двигателей" водородной энергетики в России, комплексно исследующий ее с 2000-х годов.
    901
  • 06/04/2021

    В России разрабатывают гибрид ядерного и термоядерного реакторов

     Термоядерный компонент уникального гибридного реактора создали и испытали специалисты Томского политехнического университета (ТПУ) совместно с другими российскими учеными. Разрабатываемая система, по словам авторов, объединит преимущества реакторов разных типов и будет отличаться безопасностью, экономностью и компактностью.
    458
  • 24/12/2020

    Алексей Гоголев: «Мы сумели выполнить все обязательства и не снизить планку»

    И.о. руководителя Исследовательской школы физики высокоэнергетических процессов ТПУ рассказал о достижениях коллектива школы в 2020 году, планах и задачах на следующий год.  2020 год в силу понятных причин стал для нас крайне непростым, но мы достойно выдержали удар, сумев выполнить все обязательства по грантам, программам, не допустить снижения основных индикаторов исследовательской деятельности.
    943
  • 03/03/2021

    Новый материал для лечения сложных ожогов разрабатывают химики ТГУ

    Молодой ученый химического факультета Томского госуниверситета Олеся Лапуть работает над созданием материала, способствующего ускорению регенерации повреждённых кожных покровов. Основным инструментом для достижения этой цели выступает обработка потоками низкотемпературной плазмы, модифицирующей поверхность импланта.
    644
  • 24/11/2020

    Метод радиофизиков повысит выявление рака груди на ранних стадиях

    Ученые радиофизического факультета ТГУ предложили новый подход для обнаружения малоразмерных раковых образований молочной железы при зондировании радиоволнами СВЧ-диапазона. Метод позволит повысить вероятность выявления опухолей на ранней стадии образования без использования ионизирующего рентгеновского излучения.
    476
  • 30/11/2016

    Ученые ТПУ и СО РАН создают модифицированные металлы для строительства космических аппаратов

    ​Ученые Томского политехнического университета и Института сильноточной электроники СО РАН разработали метод нанесения на металлы износостойких покрытий с их последующим вплавлением в подложку. Такие модифицированные материалы, благодаря сочетанию легкости, коррозийной стойкости и прочности, могут использоваться в машиностроении, авиа- и космостроении.
    2851
  • 13/10/2020

    Физики ТГУ улучшили сплавы с памятью формы для космоса и Арктики

    ​Сотрудники лаборатории физики высокопрочных кристаллов ТГУ первыми в мире получили структуру сплавов, обеспечивающую им особую способность к деформации и восстановлению исходной формы до 15 процентов.
    748