​​Сотрудники лаборатории высокопрочных кристаллов СФТИ Томского государственного университета нашли способ упрочнения многокомпонентных сплавов, которые выдерживают действие критически низких температур, близких к -200°С. Их можно использовать для упрочнения носовой части ледоколов, изготовления износостойкого режущего материала и для других целей, сообщает пресс-служба ТГУ.

«Отличительной чертой высокоэнтропийных сплавов (ВЭС) является их состав. Такие материалы содержат пять металлов и более, смешанных в приблизительно равных количествах, — объясняет сотрудник лаборатории физики высокопрочных кристаллов ТГУ Анна Выродова. — ВЭС обладают уникальными механическими свойствами: высокая прочность, хорошая пластичность при сохранении вязкости (медленности) разрушения вплоть до криогенных температур испытания. Такое поведение является необычным, поскольку в традиционных конструкционных материалах (аустенитная сталь, сталь Гадфильда) повышение прочности сопровождается увеличением хрупкости композита».​​

В настоящее время сотрудники лаборатории физики высокопрочных кристаллов СФТИ ТГУ при поддержке РНФ изучают высокоэнтропийные сплавы — FeNiCoCrMn и (CoCrFeNi)94Al4Ti2. Физики нашли способ значительного повышения прочности сплава (CoCrFeNi)94Al4Ti2. Для этого они сначала подвергали его деформации при температуре близкой к -200°С, затем в течение четырех часов выдерживали при температуре +650°С. После этого прочность ВЭС увеличилась в 2,5 раза — как при температурах от комнатной до -196°С, так и при высоких температурах до +700°С.

Этот материал можно использовать при крайне низких температурах, например, для изготовления запорной арматуры на нефтепроводах в Арктике. Высокопрочный сплав, устойчивый к воздействию воды, перспективен для судоходной промышленности, к примеру, для укрепления отдельных частей ледоколов.

Как отмечают учёные, повышение прочности (CoCrFeNi)94Al4Ti2 происходит при сохранении преимущественно вязкого разрушении. Данное качество является выгодным отличием, поскольку вязкое разрушение менее опасно, чем хрупкое. При хрупком характере разрушения трещина зарождается и распространяется быстро, а вязкому разрушению предшествует значительное предварительное удлинение, медленное образование и распространение трещины. Это означает, что при использовании ВЭС дефект можно заметить на начальной стадии и принять меры до разрушения детали или конструкции.

«Вблизи температуры жидкого азота (-196°С) этот сплав является высокопрочным и выдерживает напряжение порядка 2 ГПа — поясняет заведующий лабораторией физики высокопрочных кристаллов СФТИ ТГУ, профессор Юрий Чумляков. — При температурах от комнатной и выше прочность порядка 1,5 ГПа в сплаве (CoCrFeNi)94Al4Ti2 практически не изменяется и остается постоянной с увеличением температуры».​

Что касается прочностных свойств сплава FeNiCoCrMn, изучаемого физиками ТГУ, он имеет другие особенности. При низких температурах (близких к температуре жидкого азота) сплав сохраняет высокую прочность, его пластическая деформация начинается при напряжении 0,5 ГПа, а при высоких температурах (от комнатной и выше) сплав становится низкопрочным и начинает деформироваться при напряжении ниже 0,2 ГПа.

Сейчас в лаборатории решается проблема повышения прочностных свойств высокоэнтропийных сплавов при высоких температурах. Это откроет потенциал для использования их в качестве монокристаллических лопаток для газовых турбин.

Новые результаты научной работы были представлены на международной конференции и школе молодых ученых «Получение, структура и свойства ВЭС» в Белгороде, где ТГУ представляли молодые сотрудники лаборатории — аспирантка ФФ Анна Выродова и магистрантка ФФ Анастасия Сараева.

Исследования ВЭС выполнены в рамках гранта РНФ № 19-19-00217 «Новые высокопрочные моно- и поликристаллы ГЦК высокоэнтропийных сплавов, упрочненные наночастицами: от фундаментальных исследований микроструктуры к механизмам деформации и механическим свойствам», руководитель проекта — доктор физико-математических наук, главный научный сотрудник лаборатории физики высокопрочных кристаллов Ирина Киреева.

Источники

Томские ученые нашли способ в 2,5 раза упрочнить сплавы, используемые для носовой части ледоколов
Томский обзор (obzor.city), 27/10/2020
Физики ТГУ сделали прочнее сплавы для защиты ледоколов в Арктике
News-Life (news-life.pro), 27/10/2020
Ученые томского вуза нашли способ сделать материалы для арктических ледоколов прочнее
ТАСС, 27/10/2020
Физики ТГУ упрочнили сплавы, которыми можно защитить ледоколы
Поиск (poisknews.ru), 27/10/2020
Томские ученые знают как укрепить ледоколы
Корабел.ру (korabel.ru), 27/10/2020
Томские ученые-Физики создают новые сплавы, которыми можно защитить ледоколы
РИА Сибирь (ria-sibir.ru), 27/10/2020
Томские ученые нашли способ в 2,5 раза упрочнить сплавы, используемые для носовой части ледоколов
Gorodskoyportal.ru/tomsk, 27/10/2020
Ученые томского вуза нашли способ сделать материалы для арктических ледоколов прочнее
Pro-arctic.ru, 27/10/2020
Физики ТГУ упрочнили сплавы, которыми можно защитить ледоколы
Новости науки (novostinauki.ru), 27/10/2020
Томские ученые в 2,5 раза упрочнили сплав, который можно применять в Арктике
Национальная ассоциация нефтегазового сервиса (nangs.org), 27/10/2020
В СФТИ ТГУ разработали метод повышения прочности сплавов для производства запорной арматуры на нефтепроводы в Арктике
Вестник Арматуростроителя (armavest.ru), 28/10/2020

Похожие новости

  • 13/10/2020

    Физики ТГУ улучшили сплавы с памятью формы для космоса и Арктики

    ​Сотрудники лаборатории физики высокопрочных кристаллов ТГУ первыми в мире получили структуру сплавов, обеспечивающую им особую способность к деформации и восстановлению исходной формы до 15 процентов.
    388
  • 26/11/2020

    Ученые ТПУ создадут устойчивые к водородным и радиационным повреждениям композиты

    ​Специалисты Томского политехнического университета разрабатывают научные основы создания композиционных материалов, устойчивых к водородным и радиационным повреждениям. Композиты предполагается создавать на основе наноразмерных металлических многослойных систем цирконий/ниобий (Zr\Nb).
    242
  • 17/11/2020

    Ученые разработали эластичные пористые материалы для имплантатов

    ​Материаловеды СФТИ ТГУ запатентовали способ получения материала для имплантатов, которые при нагрузке ведут себя так же, как и живые ткани организма. «Природоподобный» материал создается на основе прочного никелида титана, и с помощью добавок порошка титана ученые добиваются эластичного поведения и эффекта памяти формы.
    268
  • 19/11/2020

    Цитируемые ученые ТПУ: «умные» удобрения, ферритовая керамика и наносеребро

    ​Проект «Цитируемые ученые ТПУ» подводит итоги публикационной активности ученых Томского политехнического университета за октябрь. Самый высокоцитируемый соавтор статей ученых ТПУ имеет индекс Хирша 57, а самый высокорейтинговый журнал — импакт-фактор 7,246.
    560
  • 15/09/2020

    Физики впервые создали модель для предсказания свойств любых молекул

    Группа ученых-физиков под руководством доцента ФФ ТГУ Рашида Валиева создала новую модель для расчета фотофизических характеристик молекул, которая применима для молекул любой природы, в том числе редкоземельных лантаноидов.
    395
  • 26/10/2020

    Более 300 ученых обсуждают в ТПУ методы получения изотопной продукции

    ​26 октября в Томском политехническом университете стартовала VI Международная научная конференция молодых ученых, аспирантов и студентов «Изотопы: технологии, материалы и применение». В конференции принимают участие более 300 молодых ученых, аспирантов и студентов из России, Казахстана, Чехии, Китая, Беларуси.
    285
  • 12/11/2020

    Физики ТГУ объяснили, как титановый сплав восстанавливает царапины

    ​​Коллектив междисциплинарной лаборатории компьютерного моделирования и анализа конденсированных сред ТГУ проанализировал, как микроструктура образцов из титанового сплава ВТ6 влияет на упругое восстановление царапин, формирующихся в них в процессе скретч-тестирования.
    367
  • 07/11/2019

    Более 30 студентов и аспирантов ТПУ получили стипендии Президента и Правительства РФ

    ​В числе стипендиатов Президента РФ — четыре студента и семь аспирантов Томского политехнического университета. Стипендию Правительства России будут получать 13 студентов и семь аспирантов. В течение учебного года, помимо основной, они ежемесячно будут получать дополнительную стипендию.
    984
  • 09/09/2020

    Математик ТГУ Надежда Бондарева стала лауреатом конкурса «Для женщин в науке» L’OREAL – UNESCO

    Сотрудник механико-математического факультета ТГУ Надежда Бондарева стала стипендиатом российского конкурса «Для женщин в науке» L’OREAL – UNESCO.  Эта награда вручается женщинам-ученым, работающим в сфере физики, химии, медицины и биологии, в 2020 году стипендиатами стали 10 молодых кандидатов и докторов наук со всей России.
    359
  • 20/11/2020

    Исследования ученых ТГУ помогут расширить российский рынок пиротехники

    ​Младший научный сотрудник лаборатории нанотехнологий металлургии физико-технического факультета ТГУ Сергей Соколов, его научный руководитель, доктор физико-математических наук, профессор ТГУ Александр Ворожцов и ряд других ученых подготовили к публикации серию научных работ о создании высокоэнергетических материалов с повышенными энергетическими характеристиками.
    472