​Сотрудники Южного федерального университета разработали платиносодержащий электрокатализатор на основе нового архитектурного типа наночастиц. Получение катализаторов, сочетающих активность и стабильность с пониженным содержанием драгоценного металла, позволит значительно снизить стоимость электроэнергии, производимой низкотемпературными топливными элементами. Работа выполнена в рамках проекта, поддержанного грантом Российского научного фонда (РНФ), а ее результаты были опубликованы в International Journal of Hydrogen Energy.


Катализатор – это химическое вещество, которое ускоряет химическую реакцию и при этом не расходуется. С помощью электрокатализаторов можно провести превращение энергии химической реакции, например, окисления водорода кислородом, непосредственно в электроэнергию. Такое превращение реализовано в водородно-воздушных топливных элементах – важном компоненте бурно развивающейся водородной энергетики. Для изготовления электродов, на которых протекают электрохимические превращения, применяют платиносодержащие электрокатализаторы. К сожалению, их активность постепенно снижается, а сами они подвергаются деградации. Задача состоит в том, чтобы разработать катализаторы, способные обеспечить высокую скорость реакций в течение длительного периода эксплуатации. Это необходимо для снижения стоимости производимой электроэнергии.


В рамках проекта РНФ химики разработали платиномедные электрокатализаторы нового поколения. Они сочетают пониженное содержание драгоценного металла с более высокими, по сравнению с аналогами, активностью и стабильностью.

Ранее ученые пытались создать электрокатализаторы на основе биметаллических (содержащих два металла) наночастиц, представляющих собой равномерную смесь атомов обоих компонентов (сплав). Затем основные усилия были направлены на разработку методов получения и изучение свойств наночастиц с архитектурой «металлическое ядро – платиновая оболочка». Предполагалось, что оболочка будет защищать внутреннее содержимое наночастиц от разрушения в процессе эксплуатации катализатора, а ядро из никеля, кобальта, меди или другого металла будет повышать активность их платиновой оболочки. Авторы статьи создали и протестировали такие частицы, но столкнулись с определенными трудностями. Во-первых, не все наночастицы в процессе синтеза приобретали необходимую структуру, а во-вторых, атомы металла-ядра все равно проникали на поверхность и загрязняли топливные элементы. Существенное влияние на поведение электрокатализаторов оказывало наличие границы раздела между оболочкой и ядром наночастиц. Поэтому ученые решили создать неоднородные по составу наночастицы с постепенно изменяющейся концентрацией компонентов.

«Мы разработали методику четырехстадийного синтеза платиномедных наночастиц с градиентной архитектурой, в которых концентрация атомов платины равномерно увеличивалась от ядра к поверхности наночастиц. В этой работе проведено исследование того, как подобная архитектура влияет на активность и устойчивость катализатора», – рассказал Владимир Гутерман, доктор химических наук, руководитель проекта, директор научно-образовательного центра «Химия и физика функциональных и наноструктурных неорганических материалов», профессор кафедры электрохимии химического факультета Южного федерального университета.

В ходе исследования авторы в четыре этапа наращивали на медные ядра наночастиц несколько новых слоев. Каждый последующий слой содержал больше платины и меньше меди, чем предыдущий. Ученые выяснили, что полученные катализаторы с градиентной архитектурой наночастиц теряют меньше меди при стресс-тестировании, чем аналогичные системы на основе наночастиц сплава или с архитектурой «оболочка – ядро». Исследователи провели испытания, в ходе которых чисто платиновые катализаторы деградировали на 75–98%, а градиентный платиномедный катализатор – на 12%. Это значит, что скорость его разрушения была примерно в 7–8 раз меньше.

«Мы впервые показали, что градиентная архитектура наночастиц обуславливает высокую активность платинометаллических катализаторов. Их стабильность в несколько раз выше, чем у чисто платиновых. Теперь есть возможность получать аналогичные наночастицы с другими металлами, которые могут оказаться более эффективными. Более того, работа расширяет представления о том, как исходные состав и архитектура биметаллических наночастиц влияют на особенности их эволюции – последующего изменения состава и структуры при эксплуатации», – заключил ученый.

Авторы отмечают, что на начальном этапе работы электрокатализатора для всех типов биметаллических наночастиц характерно растворение части атомов легирующего компонента (примесь, улучшающая физические свойства сплава), что может негативно повлиять на характеристики других компонентов топливного элемента. Поэтому они планируют подготовить катализаторы к эксплуатации не путем электрохимического воздействия в топливном элементе, а посредством их предобработки в специальных агрессивных средах. Тогда при последующем использовании катализаторы будут демонстрировать высокие функциональные характеристики уже при стабильном составе, что предотвратит отравление полимерной мембраны.

Источники

Российские ученые удешевили платиновые катализаторы: Яндекс.Новости
Яндекс.Новости (news.yandex.ru), 03/12/2018
Российские ученые удешевили платиновые катализаторы - Новости, 03.12.2018
Hornews.ru, 03/12/2018
Российские ученые удешевили платиновые катализаторы - Новости, 03.12.2018
IToday.ru, 03/12/2018
Российские ученые создали более дешевые платиносодержащие катализаторы
Газета.Ru, 03/12/2018
Российские ученые удешевили платиновые катализаторы - новости на сегодня 03.12.2018
News2world.net, 03/12/2018
Созданы более дешевые платиносодержащие катализаторы
Индикатор (indicator.ru), 03/12/2018
Российские ученые создали более дешевые платиносодержащие катализаторы
Российская академия наук (ras.ru), 03/12/2018
Российские ученые удешевили платиновые катализаторы
Новости@Rambler.ru, 03/12/2018
Российские ученые удешевили платиновые катализаторы
РИА Новости, 03/12/2018
Российские ученые создали более дешевые платиносодержащие катализаторы
Техника будущего (rao-ees.ru), 04/12/2018

Похожие новости

  • 20/08/2018

    Учеными созданы железные спирали тоньше человеческого волоса

    ​Исследователи СПбГУ смогли синтезировать микроспирали соединений железа диаметром около 12 микрон - почти в десять раз тоньше человеческого волоса. Их можно будет использовать, например, для создания сенсоров с высокой чувствительностью, а также в качестве миниатюрных электромагнитов или индукторов.
    247
  • 23/07/2018

    Российские ученые создали материалы для получения высококачественного бензина

    ​Сотрудник Самарского университета вместе с иностранными коллегами разработал материалы с каркасной структурой для разделения углеводородов. Эти вещества можно использовать для получения высококачественного бензина.
    296
  • 07/08/2018

    Магистранты ТПУ примут участие в работе над уникальными проектами

    ​Магистрантам Томского политехнического университета предлагают стать участниками уникальных исследовательских проектов в составе научных групп под руководством ведущих ученых вуза. Одной из таких научно-исследовательских групп является коллектив научно-образовательного центра Н.
    306
  • 08/06/2018

    Российские ученые смоделировали процесс синтеза биотоплива

    ​Российские ученые из Института химии Санкт-Петербургского государственного университета (СПбГУ) построили термодинамическую модель синтеза биотоплива для жидкой системы. Результаты исследования помогут создать более эффективные способы производства топлива из органического сырья и модифицировать известные еще с XIX века термодинамические правила.
    345
  • 03/08/2018

    Молекулярное моделирование в ТПУ поможет России освоить Арктику

    ​Исследование молодого ученого Томского политехнического университета (ТПУ) Евгении Франциной, посвященное молекулярному моделированию в углеводородах, приблизит научное сообщество к созданию идеального морозостойкого топлива.
    241
  • 25/04/2018

    Сотрудники ОмГТУ исследовали поведение двухкомпонентной газовой смеси при ее осаждении

    ​Сотрудники Омского государственного технического университета (ОмГТУ) построили решеточную модель и исследовали поведение двухкомпонентной газовой смеси при ее осаждении на поверхность твердого тела. Полученные данные иллюстрируют практически все возможные варианты взаимодействия молекул на плоскости и могут быть полезны для истолкования результатов специалистов в самых разных областях химической науки.
    389
  • 10/04/2018

    Российские химики выяснили, как повысить емкость батареек в 1,5 раза

    ​Химики из России нашли способы повысить энергетическую емкость щелочных батареек и аккумуляторов почти в 1,5 раза, изучая свойства концентрированных солей лития, говорится в статье, опубликованной в журнале Electrochimica Acta.
    447
  • 21/02/2017

    Разработки ТПУ для имплантологии выходят на стадию клинических испытаний

    ​Биодеградируемые имплантаты Томского политехнического университета выходят на стадию клинических испытаний. Как сообщают ученые ТПУ, на стадии доклинических исследований эффективность томских изделий уже доказана, и сегодня некоторые биоразлагаемые имплантаты Томского политеха сегодня частично используются в медицинской практике в одном из ведущих ортопедических центров России - Центре Илизарова.
    1592
  • 08/12/2016

    Новосибирские химики производят уникальные композитные материалы для сжигания топлива

    ​Специалисты Новосибирского государственного университета и институтов СО РАН создают керамометаллические композитные матрицы на основе порошка алюминия, его оксида и сплавов. Эти уже успешно испытанные материалы обладают уникальными характеристиками, в частности, высокой теплопроводностью, и используются для структурированных катализаторов процессов сжигания и трансформации топлив.
    1841
  • 26/04/2018

    В Томске разработали биополимер, контролирующий время действия лекарств

    ​Ученые из лаборатории полимеров и композиционных материалов Томского государственного университета (ТГУ) разработали биополимер, который поможет медикам и фармацевтам контролировать время действия лекарственных препаратов.
    417