​​Ученые Томского политехнического университета предложили способ создания сорбента для удаления из воды инсектицида имидаклоприда. Сорбент относится к классу перспективных материалов — металлорганических каркасов. Химики ТПУ вырастили такой каркас прямо на полиэтилентерефталате (ПЭТ), из которого делают обычные пластиковые бутылки. Метод достаточно прост и позволяет превращать использованный пластик в полезный продукт. Результаты исследования опубликованы в журнале Applied Materials Today (IF: 8,352; Q1).​   

Металлорганические каркасы — это вещества с трехмерной структурой, в ней кластеры или ионы металла соединены между собой «мостиками» из органических молекул. Получается пористое вещество со свойствами и металлов, и органических соединений. 

«За счет своей пористой структуры и ряда других свойств металлоорганические каркасы перспективны в качестве сорбентов. В частности, нас заинтересовала проблема сорбции инсектицидов, активно использующихся в современном сельском хозяйстве и накапливающихся в почве и воде. Мы предложили новый метод получения каркаса под названием UiO-66 с ионами циркония. Он интересен в первую очередь исходным материалом», — говорит научный руководитель работы, доцент Исследовательской школы химических и биомедицинских технологий ТПУ Павел Постников.


Ученые экспериментировали на имидаклоприде. Это один из самых распространенных инсектицидов, который используют в сельском хозяйстве в том числе для борьбы с колорадским жуком. 

«Имидаклоприд накапливается в естественных водоемах, куда попадает из почвы. По данным канадских исследователей, имидаклоприд был найден в воде по всему миру в концентрациях от 0,001 до 320 микрограммов на литр, — поясняет один из авторов статьи, младший научный сотрудник Исследовательский школы химических и биомедицинских технологий ТПУ Олег Семенов. — Обычно UiO-66 получают при высоких температурах и давлении с использованием коммерческой терефталевой кислоты. Мы же использовали ПЭТ, он состоит из этиленгликоля с терефталевой кислотой. Вот эта кислота — строительный материл для органических мостиков в каркасе, она уже есть в материале бутылки». ​

Для получения каркаса химики разрезали пластик на маленькие квадратики и подвергли их частичному разрушению в кислотном растворе. Затем в раствор добавили соли циркония. 

«Из ПЭТ частично высвобождается терефталевая кислота. На поверхности пластиковых пластинок образовываются маленькие "якорьки" из нее, а часть кислоты оказывается в растворе. Ионы циркония прикрепляются к якорькам, а дальше происходит процесс самосборки, свойственный металлоорганическим каркасам. И на поверхности пластиковых пластинок образуется каркас. Этот каркас чувствителен к имидаклоприду и за счет своих пор и физико-химических свойств притягивает молекулы инсектецида, удаляя их из воды», — говорит ученый. 

«Во время экспериментов мы пропускали через сорбент раствор с пестицидом. На эффективную очистку 1 литра воды потребовалось 15 граммов сорбента, это очень хороший показатель. При этом использовать сорбент можно несколько раз, в экспериментах мы доходили до пяти циклов. Но мы предполагаем, что сорбент не будет терять своих свойств намного больше», — говорит ученый. 

В перспективе на практике такой сорбент может использоваться в фильтрационных системах, например, на сельскохозяйственных предприятиях. 

«У нашего сорбента есть еще одно преимущество. Обычно металлоорганические каркасы порошкообразные. Они сами по себе забивают фильтры, и надо продумывать системы фильтрации с учетом этой особенности. Частицы нашего сорбента крупнее, и они не забивают фильтр. Также за счет более крупных частиц пропускная способность сорбента выше, жидкость проще проходит сквозь него. По нашим расчетам, для пропускания воды в нашем случае потребуется давление в сто раз меньше по сравнению с порошком. В конечном итоге это важно для разработки технологии и включения такого сорбента в реальный технологический процесс», — добавляет Олег Семенов.   

Сейчас ученые проводят эксперименты уже с другими металлорганическими каркасами, получаемыми на ПЭТ. 

Работа поддержана грантом Российского фонда фундаментальных исследований.      

Похожие новости

  • 30/03/2021

    Превратить пластик в карбид титана: в ТГУ патентуют новую технологию

    Молодой ученый Томского государственного университета Яна Дубкова в рамках гранта «УМНИК» заканчивает реализацию собственного проекта «Разработка технологии переработки пластика в высокотехнологичные порошки карбида титана» и готовится патентовать эту технологию.
    599
  • 29/12/2020

    Наталья Гусева: «2020 год потребовал самоотверженности и готовности к переменам»

    ​Директор Инженерной школы природных ресурсов ТПУ Наталья Гусева поделилась результатами, которых достиг коллектив школы в 2020 году, и рассказала о целях и задачах на будущий год.​   Уходящий год стал точкой отсчета новой реальности для всего мира, и, чтобы в нее «встроиться», нам пришлось многое пересмотреть и изменить в своей деятельности.
    1937
  • 18/03/2021

    Цитируемые учёные ТПУ: наносенсоры для сердца, лекарство от тромбов и топливо для Арктики

    ​Проект «Цитируемые ученые ТПУ» подводит итоги публикационной активности ученых Томского политехнического университета за февраль. Самый высокоцитируемый соавтор статей ученых ТПУ имеет индекс Хирша 17, а самый высокорейтинговый журнал — импакт-фактор 5,578.
    654
  • 02/01/2017

    Главные научные события 2016 года: секвенирование экзома, перепрограммирование клеток и трансфер технологий

    Редакция STRF.ru выяснила у представителей российского сектора исследований и разработок, что они считают главным научным событием 2016 года, каких наиболее значимых результатов они и их научные коллективы достигли в уходящем году, а также каковы их планы на 2017-й.
    2285
  • 15/12/2020

    Международная команда физиков изучила радиационные свойства озона

    ​​Полученные результаты помогут осуществлять контроль качества озонового слоя, который участвует в формировании атмосферы и климата Земли, влияет на качество воздуха, охраняет планету от жесткого ультрафиолетового излучения.
    756
  • 30/12/2020

    Топ-30 разработок сибирских ученых в 2020 году

    ​На портале «Новости сибирской науки» можно познакомиться с инновациями и последними достижениями сибирских ученых. Сегодня мы предлагаем вашему вниманию Топ-30 сообщений о наиболее значимых и интересных научных разработках 2020 года, размещенных на нашем сайте.
    6403
  • 24/02/2021

    Цитируемые учёные ТПУ: подземные воды Забайкалья, свойства Шлемника и донные осадки моря Лаптевых

    Проект «Цитируемые ученые ТПУ» подводит итоги публикационной активности ученых Томского политехнического университета за январь. Самый высокоцитируемый соавтор статей ученых ТПУ имеет индекс Хирша 90, а самый высокорейтинговый журнал — импакт-фактор 6,479.
    555
  • 19/11/2020

    Цитируемые ученые ТПУ: «умные» удобрения, ферритовая керамика и наносеребро

    ​Проект «Цитируемые ученые ТПУ» подводит итоги публикационной активности ученых Томского политехнического университета за октябрь. Самый высокоцитируемый соавтор статей ученых ТПУ имеет индекс Хирша 57, а самый высокорейтинговый журнал — импакт-фактор 7,246.
    1237
  • 11/12/2020

    Молодые ученые Иркутска предлагают свои разработки для внедрения в различные сферы от космоса до нефтепереработки

    ​За достижения в области науки и техники 22 иркутянам вручили стипендии мэра. С интересными, а главное, полезными для города исследованиями на конкурс заявились студенты, аспиранты и молодые ученые из ИГУ, ИрНИТУ, ИрГУПС, БГУ, Сибирского института физиологии и биохимии растений СО РАН.
    686
  • 10/03/2021

    Изучение планктона цифровой голографической камерой поможет экологии

    Ученые лаборатории радиофизических и оптических методов изучения окружающей среды РФФ ТГУ нашли способ определять загрязнения водоемов по планктону. Основной инструмент – цифровая голографическая камера.
    580