Сотрудники Омского государственного технического университета проанализировали свойства фаз веществ в модели, в которой смешаны два типа газа, и классифицировали взаимодействия между ними. Полученные результаты позволят усовершенствовать оборудование, которое меняет химические показатели веществ. Работа проходила в рамках проекта, поддержанного грантом Президентской программы исследовательских проектов Российского научного фонда, а ее результаты опубликованы в журнале Adsorption.

Все природные явления в мире делятся на химические и физические. При первых образуется новое вещество: например, при горении выделяется углекислый газ. При физических явлениях соединение не образуется, но изменяется состояние уже имеющегося. Так, когда вода испаряется, она переходит из жидкого состояния в газообразное – пар.

Специалисты в вычислительной химии изучают эти явления при помощи компьютерных моделей. Авторы работы исследуют процессы самоорганизации на поверхности, в частности особенности поведения поверхностных молекулярных монослоев из смеси молекул разного типа. Ученые ищут движущие силы такой самоорганизации, чтобы в будущем управлять молекулярными процессами на макроуровне.

Ранее авторы начали исследования простейшей модели адсорбционной системы, в которой одно вещество поглощает молекулы другого, находящиеся рядом с ним. Это происходит, потому что силы межмолекулярного воздействия на границе этих двух веществ неравны, так что одно из них может разорвать внутренние связи между частицами другого и «утянуть» их к себе.

Авторы изучили модельную систему, в которой поглощение происходит между двумя газами на поверхности с квадратной симметрией. Ее можно сравнить с шахматным полем: все клетки одинаковые и находятся в строгом порядке, а фигуры, которыми в этом случае и являются молекулы газов, могут занять только одну клетку. При этом газы взаимодействуют друг с другом, отталкивая либо притягивая друг друга.

«Существует бесконечное количество наборов межмолекулярных взаимодействий, и нашей задачей было сгруппировать их в соответствии с особенностями фазового поведения адсорбционного монослоя», — рассказал один из авторов статьи Василий Фефелов, кандидат химических наук, старший научный сотрудник кафедры «Химическая технология» Нефтехимического института ОмГТУ.

Адсорбционный монослой — это слой, который состоит из «прилипших» к поверхности молекул из газовой смеси. На нем могут формироваться упорядоченные структуры в зависимости от концентраций молекул в газе и их взаимодействий.

В ходе работы ученые выяснили, что у отталкивающих сил есть 14 типов фазовых диаграмм, а у притягивающих — 12. Также существует адсорбция невзаимодействующих газов разного типа: молекулы взаимодействуют только с представителями своего сорта. В этой группе ученые увидели шесть разных типов диаграмм.

В следующей работе авторы планируют провести масштабный системный анализ того, как геометрия поверхности влияет на фазовое поведение адсорбционного слоя в изучаемой модели. Фазовым поведением называют изменения состояния вещества. Например, вода в зависимости от температуры меняет свои фазы: пар, жидкость и лед. В данном случае все очень похоже, только система двумерная, а льдов может быть несколько видов с разной структурой.

Авторы отмечают, что работа носит фундаментальный характер, однако, несмотря на это, ее результаты перспективны для разных областей науки и техники. Так, ученые показывают перспективы высокоточного адсорбционного оборудования, которое позволит менять химические потенциалы, например концентрацию газовых компонентов, с точностью, соизмеримой с энергиями межмолекулярных взаимодействий. Это приведет к качественным изменениям протекающих химических реакций: ускорению и повышению избирательности при одновременном снижении температуры. К такому оборудованию относятся химические микрореакторы, которые позволяют комбинировать отдельные базовые устройства (смесители, теплообменники) в одной системе.

«Полученные результаты могут быть полезны для интерпретации экспериментальных данных газоразделения, процессов молекулярной самосборки на поверхности, ускорения реакций при низких температурах», — добавил Василий Фефелов.

Похожие новости

  • 16/04/2019

    Рентген помог российским физикам уточнить структуру воды

    ​Международный коллектив ученых точно измерил силу водородных связей между молекулами воды и опроверг популярную сегодня теорию о том, как устроена эта необычная жидкость. Новое теоретическое описание структуры воды было представлено в журнале Nature Communications.
    201
  • 04/10/2018

    Фестиваль науки «Кстати» состоялся в Новосибирске

    Фестиваль науки «Кстати» прошёл в Новосибирске в третий раз. Темой этого года стал «Горизонт событий». 30 мероприятий фестиваля за пять дней посетили около 2500 человек. Главного события — открытия нового Информационного центра по атомной энергии в НГТУ — новосибирцы ждали особенно.
    557
  • 21/04/2017

    Красноярские физики получили нанодисперсные порошки для создания аккумуляторов водорода

    Ученые Сибирского федерального университета и Института физики имени Л.В. Киренского СО РАН разработали технологию синтеза нанодисперсных порошков магния, которые могут стать перспективным материалом для изготовления аккумуляторов водорода для автомобильного транспорта.
    1400
  • 29/04/2019

    Команда российских ученых выдвинула гипотезу о существовании жизни на Венере

    Ученые из Института космических исследований РАН, Института катализа имени Г. К. Борескова СО РАН и НГУ выдвинули гипотезу о существовании жизни на Венере. К таким выводам исследователей привела новая обработка панорамных изображений поверхности Венеры, полученных советскими аппаратами «Венера-9», «Венера-10», «Венера-13» и «Венера-14» в 1975—1982 годах.
    309
  • 16/05/2017

    Ученые СФУ разработали наиболее эффективный материал для аккумулирования водорода

    Красноярские ученые получили новый материал для хранения водорода, сообщила пресс-служба Сибирского федерального университета (СФУ). Материал на основе гидрида магния может хранить массу водорода, составляющую около 7% его собственной массы, и это рекордное значение емкости для всех аналогичных материалов.
    979
  • 09/04/2019

    Алтайские ученые займутся исследованиями в области очищения воздуха от вредных частиц ультразвуком

    Проект ученых Бийского технологического институт Алтайского государственного технического университета получил грантовую поддержку Российского научного фонда. Фонд обнародовал результаты конкурса 2019 года на получение грантов по приоритетному направлению деятельности «Проведение фундаментальных научных исследований и поисковых научных исследований отдельными научными группами».
    138
  • 20/02/2019

    Новосибирские ученые исследовали воздействие мощного терагерцового излучения на мышечные ткани

    ​Ученые Института химической кинетики и горения им. В.В. Воеводского СО РАН (ИХКГ СО РАН) и Новосибирского государственного медицинского университета совместно с коллегами из Института ядерной физики им.
    342
  • 13/07/2017

    В ТПУ проверили на токсичность «ловушки» для свободных радикалов

    ​​Ученые Томского политехнического университета исследовали на токсичность фуллеренолы — водорастворимые производные фуллеренов. Сейчас эти вещества находятся на пике изучения и, благодаря своим уникальным свойствам, представляют интерес для фармакологической промышленности, медицины, металлургии, косметологии и других отраслей.
    788
  • 09/04/2019

    Сибирские ученые оптимизируют работу электронных дисплеев органическими полупроводниками

    ​Ученые Новосибирского государственного университета (НГУ) займутся исследованием свойств органических полупроводников (материалов, используемых в электронике), чтобы повысить эффективность используемых сейчас электронных дисплеев, сообщил ТАСС руководитель лаборатории органической оптоэлектроники НГУ Евгений Мостович.
    229
  • 20/08/2018

    Учеными созданы железные спирали тоньше человеческого волоса

    ​Исследователи СПбГУ смогли синтезировать микроспирали соединений железа диаметром около 12 микрон - почти в десять раз тоньше человеческого волоса. Их можно будет использовать, например, для создания сенсоров с высокой чувствительностью, а также в качестве миниатюрных электромагнитов или индукторов.
    399