Специалисты из Новосибирского государственного университета, Института неорганической химии СО РАН и Пекинского университета химических технологий исследовали свойства модифицированного графита — перфорированного окисленного графена. В частности, было найдено объяснение природы наблюдаемой двухволновой фотолюминесценции и полученного рекордного значения квантового выхода 11,6%. В перспективе такое соединение может использоваться в электронных и оптоэлектронных приложениях, например, для создания фототранзисторов, устройств конверсии энергии, фотодетекторов и осветительных приборов.

Оптические изображения водной дисперсии (a), порошка (b) перфорированного окисленного графена, водной дисперсии с величиной поглощения равной 1 при 222 нм (c); электронномикроскопические изображения оксида графита (d) и перфорированного окисленного графена (e, f, g)

Графен — монослой кристалла графита. Учёные из Китая и России создали из оксида графита тонкие слои оксида графена с большим количеством дефектов (дырок) в структуре и изучили его строение и фотолюминесцентные свойства. Китайская сторона занималась экспериментальной частью работы, российская — интерпретацией результатов с помощью квантовой химии.

В исследовании приняли участие учёные из лаборатории углеродных волокон и функциональных полимеров Пекинского университета химических технологий под руководством профессора Хуайхе Сонга (Huaihe Song) , лаборатории углеродных наноматериалов Новосибирского государственного университета, лаборатории физикохимии наноматериалов Института неорганической химии им. А. В. Николаева (ИНХ) СО РАН.

На основе проведенного исследования в журнале Carbon (IF= 6,198) опубликована статья Leaky graphene oxide with high quantum yield and dual-wavelength photoluminescence.

Как отмечает заведующий лабораториями углеродных наноматериалов НГУ и физикохимии наноматериалов ИНХ СО РАН, эксперт САЕ НГУ «Низкоразмерные гибридные материалы» Александр Окотруб, идея получения нового материала была предложена сотрудниками институтской лаборатории (Николаем Юдановым и Вячеславом Туром):

Несколько лет назад нам удалось получить модифицированный графит путём придания ему большого количества дырок в графеновых слоях (перфорированный графит). Эта идея очень понравилась китайским коллегам, с которыми мы сотрудничаем в области создания новых гибридных углеродных материалов для электрохимических накопителей энергии.

Синтезом образцов занимался аспирант Пекинского университета химических технологий Су Чжан (Su Zhang). В процессе повторного окисления оксида графита образовались слои графена с большим количеством структурных дефектов и кислородосодержащих функциональных групп, которые условно поделили его на участки разных размеров.

 

Оказалось, что окисленный перфорированный графен при облучении ультрафиолетом проявляет двухволновую фотолюминесценцию в сине-зелёном диапазоне с квантовым выходом (отношением среднего количества излучённых квантов к количеству поглощённых), равным 11,6%. Для исходного оксида графита эта величина составляла 7%. Су Чжан обратился к новосибирским коллегам, чтобы выяснить природу двух волн излучения и объяснить рекордное значение квантового выхода.


По словам старшего научного сотрудника лабораторий углеродных наноматериалов НГУ и физикохимии наноматериалов ИНХ СО РАН Юлии Федосеевой, известно, что графен — проводник, не проявляющий оптических свойств, но если уменьшить его площадь до нанометровых размеров, то он приобретает характеристики полупроводника — с уменьшением размера графеновых плоскостей ширина запрещённой зоны и оптического перехода увеличивается, при этом длина волны испускаемого света уменьшается:

Высокая величина квантового выхода в данном эксперименте оказалась связана с тем, что после окисления и создания дырок в плоскости графена размер изолированных фрагментов материала стал намного меньше. Их большое количество и малый размер повлияли на цвет и высокую интенсивность фотолюминесцентного свечения.

 

Вторая часть работы была связана с исследованием влияния на графен кислородосодержащих функциональных групп. Перфорированный окисленный графен восстановили тремя способами — гидротермальным, сольвотермальным в присутствии гидразина и нагреванием в гидразин-гидрате. После восстановления в образцах уменьшилось количество кислородосодержащих групп, и появился азот, который входит в состав гидразина. Квантовый выход снизился, соответственно методам, до 1,7%, 4,6% и 5,6%, а спектры фотолюминесценции сдвинулись в синюю область и уменьшились в интенсивности.

Мы пришли к выводу, что фотолюминесценция в перфорированном оксиде графена и возникает в результате электронных переходов, в которых участвуют связующие и разрыхляющие π-орбитали графена. Две полосы фотолюминесценции показывают, что в образце присутствуют графеновые области разного размера, которые отделены друг от друга «дырками» и функциональными группами. После удаления функциональных групп размер графеновых областей увеличивается, и интенсивность в основном зеленой полосы фотолюминесценции уменьшается, — говорит Юлия Федосеева.

Учёные также выяснили, что если удалить кислород- и азотсодержащие группы, расположенные на краях графена, то диапазон свечения сдвигается в синюю область спектра.

Александр Окотруб подчёркивает, что у окисленного графена есть широкие перспективы применения в электрохимических приложениях:

Слои перфорированного графена выступают как очень тонкие фильтры, через которые могут протекать только очень маленькие молекулы. Мы изучали структуру этих соединений, химически-реакционную способность, и сейчас ведётся работа по исследованию и применению таких веществ в электрохимии. Создавая дефекты на поверхности графена, мы сильно модифицируем его свойства — появляется заряд, меняется тип носителей, их концентрация и даже характер проводимости. Если графен в основном используется в электронных приложениях, то окисленный графен найдёт применение в электрохимии, в литий–ионных аккумуляторах, в качестве носителя в электрокаталитических системах, топливных элементах и многих других приложениях.

Анастасия Аникина

Похожие новости

  • 01/07/2021

    В НГУ исследовали зависимости электрохимического поведения материалов для суперконденсаторов от температуры отжига и типа электролита

    В лаборатории гибридных материалов для электрохимических накопителей энергии Факультета естественных наук НГУ изучили электрохимические свойства восстановленного оксида графита (ВОГ), полученного методом термического отжига при разных температурах.
    579
  • 28/12/2020

    Кадры для инноваций: об Институте химических технологий

    ​Новосибирский государственный университет совместно с Институтом катализа СО РАН создал новое структурное подразделение — Институт химических технологий (ИНХИТ). На этой площадке ученые будут готовить специалистов в интересах промышленных предприятий, а также вести исследовательскую и инновационную деятельность.
    1078
  • 25/02/2020

    В Новосибирске создан новый нанокомпозитный материал

    ​Сотрудник лаборатории гибридных материалов для электрохимических накопителей энергии и студентка магистерской программы «Химическое материаловедение» Факультета естественных наук НГУ Анна Юрченкова в коллаборации с сотрудниками лаборатории физикохимии наноматериалов Института неорганической химии им.
    936
  • 09/04/2019

    Сибирские ученые оптимизируют работу электронных дисплеев органическими полупроводниками

    ​Ученые Новосибирского государственного университета (НГУ) займутся исследованием свойств органических полупроводников (материалов, используемых в электронике), чтобы повысить эффективность используемых сейчас электронных дисплеев, сообщил ТАСС руководитель лаборатории органической оптоэлектроники НГУ Евгений Мостович.
    2301
  • 16/12/2020

    Новосибирские ученые первыми в мире получили данные о механизме прохождения ценных промышленных газов через перспективный пористый материал ZIF-8

    ​​Ученые из лаборатории структуры и функциональных свойств молекулярных систем НГУ, сотрудники Института катализа СО РАН Даниил Колоколов, Александр Художитков и Александр Степанов совместно с другими исследователями провели работу по экспериментальному измерению диффузии легких углеводородов.
    955
  • 18/02/2021

    Новосибирские учёные ищут объяснение транспортных свойств твердых электролитов

    ​Всем известны жидкие электролиты: именно они проводят электрический ток в самых обычных батарейках. Однако вместе с ними существуют еще и твердые электролиты: научное сообщество до сих пор спорит о том, как в них происходит перенос ионов.
    623
  • 03/01/2019

    Обнаружены особенности образования соединений, мешающих добыче нефти и газа

    ​​Ученые из Института неорганической химии имени А.В. Николаева Сибирского отделения Российской академии наук (ИНХ СО РАН) исследовали реакцию образования кристаллических соединений воды и газа (газовых гидратов) с метастабильной (неустойчивой) структурой.
    2328
  • 26/11/2020

    НГУ и Институт катализа СО РАН создали платформу адресной подготовки специалистов для промышленности

    ​​​В Новосибирском государственном университете совместно с Институтом катализа СО РАН создано новое подразделение — Институт химических технологий. Институт действует по принципу гибкой платформы: заказчик ставит задачу, затем формируется команда преподавателей-исследователей при участии проходящих подготовку студентов и аспирантов.
    2140
  • 03/09/2018

    Ученые рассчитали параметры устойчивости гибридных фотоэлектрических наноматериалов

    ​​Сибирские ученые совместно с иностранными коллегами рассчитали, какие параметры влияют на силу взаимодействия углеродных нанотрубок с фталоцианинами – сложными азотсодержащими соединениями. Гибридные конструкции на их основе можно использовать в качестве новых материалов для создания солнечных батарей, сенсоров и оптических приборов.
    1319
  • 17/10/2016

    Новосибирские учёные исследуют искусственные наночастицы

    ​Группа специалистов из лаборатории радиоуглеродных методов анализа Новосибирского государственного университета и ряда институтов СО РАН провела исследование с помощью ускорительной масс-спектрометрии, результаты которого убедительно показали — искусственные наночастицы, которых в окружающей атмосфере становится всё больше, очень плохо выводятся из организмов млекопитающих.
    3574