Ученые Сибирского федерального университета и Института физики имени Л.В. Киренского СО РАН разработали технологию синтеза нанодисперсных порошков магния, которые могут стать перспективным материалом для изготовления аккумуляторов водорода для автомобильного транспорта.

Водородное топливо скоро может заменить бензин, мазут и уголь.  На это рассчитывают экологи и над этим иронизируют нефтяники. Тем временем производители выпускают на дороги прототипы исключительно водородных автомобилей: абсолютно экологичных и при этом не намного дороже своих бензиновых собратьев. 

Но водород – газ очень опасный, взрывается! И сегодня ученые всего мира ломают головы над тем, как хранить и перевозить водород в объемах, достаточных для питания, например автомобиля. Стационарное долгосрочное хранение водорода – немногим сложнее хранения любого газа: его хранят под давлением в сжатом виде, в сжиженном виде, в баллонах,  цистернах. Предполагается, то водород можно хранить даже  в подземных соляных пещерах. Чтобы водород не взорвался, баллоны для его хранения делают очень прочными, применяют материалы, через которые газ не может просочиться наружу. Емкости получаются либо тяжелые и громоздкие, либо дорогостоящие. Производители автомобилей сегодня пошли по пути упрочнения и повышения надежности традиционных систем хранения (газовых баллонов): оболочки водородных баков автомобилей, работающих на водороде, сделаны из нескольких слоев сверхпрочных полимеров и углеродных материалов.  

Другой безопасный путь – использовать принципиально иные технологии, например, хранение водорода в химических соединениях. Водород в них находится в связанном виде, не может улетучиться сам по себе, но при этом достаточно просто извлекается. Гидриды – твердые нелетучие вещества (т.е. порошки), которые образуются от соединения некоторых металлов с водородом, — подходят для этих целей лучше всего. Принцип использования гидридов в качестве среды хранения водорода прост: под давлением металл захватывает водород, водород словно растворяется в металле, образуя новое химическое вещество, а при нагреве гидрида газ отдается обратно. Баллон с порошком гидрида металла, значительно менее опасен, чем повреждённая емкость с сжиженным водородом или охлажденный сосуд, где водород хранится под высоким давлением. 

Самый "вместительный" металл, который можно превратить в гидрид, – это палладий (в одном объеме палладия можно уместить 900 объемов водорода). Несмотря на то, что Россия является мировым лидером по добыче и производству палладия,  использование этого металла для превращения в промышленный водородный аккумулятор даже не рассматривается: металл очень тяжелый и чрезвычайно дорогой. 

 

Палладий / © Фото : Jurii 

За  много лет исследований ученые выяснили, что наиболее перспективный металл, который может практически использоваться для хранения водорода в гидриде,  - это  магний. У него небольшая плотность (в 4.5 раза легче железа и 1.5 раза легче алюминия), относительно низкая стоимость, и в теории он может связывать до 7,66% водорода в расчете на единицу массы.  Однако достигнуть предельного значения непросто, эту задачу и решают ученые многих стран мира. 

Группа ученых-физиков из Сибирского федерального университета и  Института физики им. Л.В. Киренского СО РАН, разработали технологию синтезирования  нанодисперсного порошка магния (т.е. с линейными размерами частиц в пределах 100 нм) и достигли растворения в нем чуть менее 7 весовых процентов водорода. Как отмечает один из авторов проведенной работы, профессор, доктор физико-математических наук, сотрудник Института физики имени Л.В. Киренского СО РАН и СФУ Григорий Чурилов, полученный результат — один из самых успешных в мире: сегодня экспериментальные показатели насыщения гидрида магния водородом составляют 5-6 весовых процента.  

Ученый добавляет, что сегодня в мире идет исследование возможности создания аккумуляторов водорода на основе гидрида магния, но растворить водород в металле по максимуму – мало. Необходимо сделать так, чтобы магниевый порошок мог бы использоваться в системе многократно. Кроме этого нужно снизить температуру отдачи водорода (гидрид магния отдает водород при температуре 360 градусов Цельсия), увеличить скорость протекания реакции насыщения магния водородом (это необходимо для того, чтобы полный бак безопасного водорода заправлялся 5 минут, а не полчаса). 

Полученный экспериментальный результат красноярских ученых приблизил нас к созданию действительно безопасного водородного двигателя.

Похожие новости

  • 15/03/2016

    Ученые СФУ сделают производство алюминия чистым и экологичным

    ​Ученые Сибирского федерального университета совместно с коллегами из Института химии и химической технологии СО РАН заявили: они, наконец, нашли способ чистого производства алюминия. В этом им поможет автоклавный угольный пек - его можно получить после переработки мелко измельченного угля и органического растворителя под высоким давлением и температурой.
    488
  • 20/05/2016

    Сибирский биофизик разработал компьютерную программу для оптических исследований межзвёздной пыли и клеток крови

    Биофизик Новосибирского государственного университета Максим Юркин занимается развитием метода дискретных диполей.  На его основе учёный разработал универсальную компьютерную программу ADDA, одним из приложений которой является моделирование светорассеяния биологическими клетками (в частности, клетками крови человека и бактериями).
    741
  • 05/01/2017

    Егор Задереев: научные итоги 2016 года в Красноярске

    ​Ученый и популяризатор науки Егор Задереев подводит традиционные научные итоги года в Красноярске. Премии года Для анализа я использую базу данных научных публикаций Web of Science — самый строгий и признанный во всём мире фильтр качества.
    340
  • 16/09/2016

    Красноярские ученые разрабатывают аппаратуру для автоматизации космических испытаний

    Ученые и специалисты Сибирского федерального университета разработали программно-аппаратный комплекс, предназначенный для проверки бортового оборудования космических аппаратов в процессе изготовления и проведения испытаний.
    475
  • 14/11/2016

    Ученые из Красноярска сделают алюминиевое производство более экологичным

    ​Ученые СФУ совместно с коллегами из Института химии и химической технологии СО РАН ведут исследования по созданию нового материала - автоклавного угольного пека для производства электродов. По словам технического директора РУСАЛа Виктора Манна, осуществляющего непосредственное руководство работой, внедрение "экологичного" пека на алюминиевых заводах позволит значительно улучшить состояние воздуха, достигнуть нормативных показателей по выбросам вредных веществ в окружающую среду.
    436
  • 13/03/2017

    Центр энергоэффективного катализа НГУ как воплощение идеи интеграции НГУ и ИК СО РАН

    Научно-образовательный центр энергоэффективного катализа (НОЦ ЭК), созданный Институтом катализа им. Г.К. Борескова СО РАН и Новосибирским государственным университетом при финансовой поддержке Фонда «Сколково», за три года функционирования показал выдающиеся результаты.
    112
  • 12/05/2016

    Российские физики смоделировали акустические волны в пьезоэлектрических микроструктурах

    ​Физики из Технологического института сверхтвердых и новых углеродных материалов, Московского физико-технического института и Сибирского федерального университета смоделировали акустические волны в пьезоэлектрических микроструктурах, на основе которых можно создать компактные и высокочувствительные датчики.
    467
  • 28/07/2016

    Эксперты подтвердили высокое качество производимой на реакторе ТПУ ортофосфорной кислоты

    ​Произведенная на исследовательском реакторе Томского политехнического университета ортофосфорная кислота, внутри которой находится атом фосфора-32, прошла независимую экспертизу.  В заключении экспертов говорится, что представленный образец "полностью соответствует предъявляемым требованиям".
    526
  • 14/02/2017

    Томский ученый Илья Романченко - о физике и разработках

    ​​​Томский физик Илья Романченко получил премию президента в области науки и инноваций для молодых ученых за 2016 год. В интервью РИА Томск он рассказал о том, как его работа может помочь в борьбе против раковых клеток и террористов, почему в физике недостаточно просто выучить формулы, а также на что он собирается потратить 2,5 миллиона рублей.
    537
  • 12/10/2016

    Томские ученые испытывают новые стекла для космических спутников

    ​Сотрудники НИИ ПММ ТГУ проводят испытания покрытий, созданных для защиты иллюминаторов, линз и зеркал космических аппаратов от эрозии. При помощи легкогазовой баллистической установки экспериментальные образцы обстреливают микрочастицами порошка железа со скоростью 5-8 километров в секунду.
    456