​Коллектив учёных, в том числе из Института синтетических полимерных материалов РАН и МФТИ, выяснил, как «правильность» молекул полипропилена и способ обработки влияют на механические свойства конечного изделия. С помощью этих знаний можно на стадии синтеза задавать материалу нужные свойства: от эластичности до твёрдости. Работа опубликована в журнале Polymer и поддержана грантом РНФ.


Помягче или пожёстче?

Полипропилен иногда называют «королём пластмасс», потому что он используется повсеместно. По объёмам производства среди полимеров его обгоняет только полиэтилен. Из полипропилена можно получать материалы с широким спектром свойств: от эластичных резинок до высокопрочного пластика, — немного меняя структуру молекул. Однако взаимосвязь между химическим строением и механическими свойствами по прежнему до конца не установлена.

Полимерные материалы способны к метаморфозам благодаря их строению. Полимеры — это длинные молекулярные цепочки, причём цепочки могут быть разной длины. Если материал представляет собой аморфную кашу из молекул, то он будет очень мягким. Но части цепочек могут сцепляться и образовывать так называемые кристаллиты. Кристаллиты — это участки, где атомы строго упорядочены, как в кристаллах. Кристаллиты служат узлами, скрепляющими цепочки, и чем их больше, тем прочнее сетка из цепочек и тем жёстче материал. Чтобы цепочки связывались, у структуры молекул должна быть определённая особенность.

Как тактично
Химическая формула полипропилена - цепочка, звеньями которой служит пропилен (пропен). А пространственная структура молекулы определяется тем, как звенья расположены по отношению друг к другу. Если их "хвостики" CH3смотрят в одну сторону, это называется изотактичностью, если по очереди смотрят то в одну, то в другую - синдиотактичностью, а если никакой закономерности нет, говорят об атактичности. Изотактические участки хорошо скрепляются друг с другом, поэтому чем их больше, то есть чем выше изотактичность полипропилена, тем прочнее должен быть материал. Химики-синтетики могут получать полипропилен с определенной степенью изотактичности. Как именно связаны между собой изотактичность и механические свойства материала - вопрос, который поставили перед собой авторы исследования.

Установленный закон
Степень изотактичности полимеров измеряется процентным содержанием пентад. Пентада - это изотактический участок молекулы, состоящий из пяти звеньев. Ученые изучали полипропилен с разной степенью изотактичности: 25, 29, 50, 72, 78, 82 и >95%. Из этого полипропилена получали образцы в виде тонких пленок толщиной 0,5-0,7 мм двумя способами: в одном случае расплавленный материал закаляли холодной водой, а в другом - медленно остужали со скоростью 3 градуса в минуту. Полипропиленовые пленки растягивали со скоростью 10 мм/мин с помощью специальной тестовой машины. На основе механических тестов для каждого образца построили кривую деформации. Поведение образцов при деформации зависело от их изотактичности и предыстории. Эту закономерность ученые отобразили с помощью зависимости модуля упругости от степени кристалличности. Чем выше модуль упругости, тем неподатливее материал. Степень кристалличности - это содержание кристаллитов в материале по отношению к аморфной части. Кроме этого, ученые показали, что у закаленных и медленно охлажденных образцов кристаллиты находятся в разной форме.

"Многие пытаются улучшать свойства полипропилена, потому что отдача очень большая: его выпускают миллионами тонн. Можно чуть-чуть изменить структуру цепи или начальные условия и получить материал с необходимыми свойствами. Во время синтеза можно задать структуру молекулы, но оказывается, что задавая структуру молекулы, вы задаете свойства сетки, а задавая свойства сетки, вы задаете свойства материала. Это самый главный вывод, который мы делаем в статье. Сейчас мы проделываем подобную работу над не менее популярным полимером - полиэтиленом", - комментирует автор статьи, преподаватель МФТИ и ведущий научный сотрудник лаборатории функциональных полимерных структур ИСПМ РАН Максим Щербина.

Источники

Характер "короля пластмасс" связали с тактичностью и происхождением
Российский научный фонд (рнф.рф), 12/01/2018
Характер "короля пластмасс" связали с тактичностью и происхождением
ИА МАНГАЗЕЯ (mngz.ru), 12/01/2018
Характер "короля пластмасс" связали с тактичностью и происхождением
БезФормата.Ru Подмосковье (podmoskovye.bezformata.ru), 12/01/2018
Характер "короля пластмасс" связали с тактичностью и происхождением
Московский физико-технический институт (mipt.ru), 12/01/2018
Король пластмасс станет еще лучше
Русская планета (rusplt.ru), 12/01/2018
Ученые исследовали характер полипропиленa
Научная Россия (scientificrussia.ru), 15/01/2018

Похожие новости

  • 15/05/2018

    Российские ученые обнаружили аномалии в изменении теплоемкости кристаллов

    ​Российские ученые из МГТУ им. Н.Э. Баумана и Института физики высоких давлений им. Л.Ф. Верещагина РАН исследовали необычное увеличение теплоемкости кристаллов, которое проявляется, если между частицами действуют силы с ограниченным радиусом действия.
    864
  • 16/02/2019

    Российские ученые нашли безопасный способ получения кремниевых нанонитей

    ​При производстве кремниевых наноструктур, востребованных в разных областях промышленности, обычно используется достаточно токсичная плавиковая кислота. Сотрудники МГУ имени М. В. Ломоносова нашли способ, как избежать её применения.
    576
  • 25/09/2019

    Ученые ТГУ нашли новые пульсации в пламени «горелки» для тяжелого топлива

    Исследования нового устройства, созданного в Институте теплофизики Сибирского отделения Российской академии наук и предназначенного для бессажевого сжигания тяжёлого углеводородного топлива с паровой газификацией, провели на механико-математическом факультете.
    365
  • 10/07/2019

    Исследователи создали магнитострикционный сплав редких металлов

    ​Ученые из Санкт-Петербургского политехнического университета Петра Великого совместно с коллегами создали многофункциональные металлические сплавы, которые под воздействием магнитного поля демонстрируют одновременно два эффекта: выделение и поглощение тепла, а также изменение размеров и объема материала.
    527
  • 13/12/2017

    Российский физик нашел новый способ запустить термоядерную реакцию

    Физик из МГУ и Института прикладной математики РАН доказал, что термоядерную реакцию можно запустить, используя уже существующие ускорители плазмы и магнитные ловушки, что может ускорить создание чистых источников энергии, говорится в статье, опубликованной в журнале Plasma Physics and Controlled Fusion.
    1300
  • 15/12/2017

    Российские ученые исследовали взаимодействия одиночных импульсов

    ​Российские ученые изучили поведение одиночных импульсов волн - однократных возмущений, распространяющихся в пространстве или в среде, - при их столкновении в нелинейных средах. Результаты работы ученых из России и Швеции опубликованы в журнале Nonlinear Dynamics.
    1461
  • 05/09/2017

    Терагерцовый лазер помог изучить нагревание кристаллов

    ​Ученые исследовали тепловые и световые искажения в кристалле при его взаимодействии с высокочастотным терагерцовым излучением. В результате было установлено, как в кристалле изменяется температура. Работа опубликована в журнале Laser Physics Letters.
    834
  • 11/10/2019

    Электрохимия на службе у фотоники: как углеродные нанотрубоки управляют лазерными импульсами

     Международная команда ученых, которую возглавила группа из Лаборатории наноматериалов Центра фотоники и квантовых материалов Сколковского института науки и технологий, показала возможность управления нелинейно-оптическим откликом углеродных нанотрубок с помощью электрохимического легирования.
    213
  • 26/09/2019

    Международная группа с участием ученых НГУ опубликовала статью о новом методе управления лазером

    В НГУ проведены исследования волоконного лазера с оригинальным управляющим элементом, использующим композитный наноматериал нового поколения на основе углеродных нанотрубок и ионной жидкости. Результаты работы опубликованы в престижном журнале Nano Letters.
    320
  • 21/06/2019

    Томские ученые создали новый сплав с памятью формы, который превзошел никелид титана

    ​Ученые лаборатории физики высокопрочных кристаллов СФТИ ТГУ в рамках совместного гранта РНФ и Немецкого научно-исследовательского сообщества (DFG) разработали новый сплав с памятью формы. По функциональным характеристикам он превосходит никелид титана – лидера среди материалов, способных восстанавливать свою форму при нагреве после высоких внешних нагрузок.
    389