​​Одно из крупнейших мировых научных издательств Springer выпустило англоязычную книгу ученых отделения электронной инженерии Томского политеха — профессоров Игоря и Олега Мининых. Издание «Фотонный крючок: от оптики до акустики и плазмоники» посвящено ранее открытому ими новому типу искусственно искривленного луча. Ему исследователи и дали название «фотонный крючок».  

До обнаружения фотонного крючка науке был известен лишь один тип искривленных лучей — пучки Эйри и их производные. Их впервые получили в 2007 году в Университете Флориды. Однако, для их получения используется достаточно трудоемкий метод, сложное и громоздкое оборудование.

Фото: экспериментальная визуализация фотонного крючка 

В то время, как получить фотонный крючок на масштабах порядка длины волны оказалось несравнимо проще. Для этого необходим лишь источник фотонов, например, лазер, и микроразмерная частица из диэлектрического материала необычной формы — куб с пристыкованной к нему призмой. Проходя через эту частицу, фотонное излучение «искривляется» и принимает форму крючка. 

«Поиск принципов создания новых искривленных пучков — это интересная современная область исследований, открывающая широкие перспективы как с фундаментальной точки зрения, так и с практической. В 2015 году наш авторский коллектив теоретически предсказал существование фотонных крючков, а затем с российскими и зарубежными коллегами мы экспериментально подтвердили этот эффект в оптике, терагерцовом диапозоне, в акустике. И совсем недавно мы получили «плоский», двумерный «плазмонный» вариант фотонного крючка. Он меньше трехмерного и обладает новыми свойствами, поэтому его можно рассматривать как наиболее перспективный передатчик сигналов в высокоскоростных оптических микросхемах и для манипуляций наночастицами в наномасштабе, — говорит один из авторов, профессор отделения электронной инженерии ТПУ Игорь Минин. — В последнем издании мы собрали всю самую важную информацию о свойствах фотонного крючка. Интересно, что одно из предисловий к книге было написано автором открытия пучков Эйри». ​

Эффект фотонного крючка в перспективе может использоваться как для увеличения разрешения самых зорких из оптических микроскопов — наноскопов — так и в телекоммуникационных устройствах, в биологических исследованиях. Так, за счет своих физических свойств, крючок может захватывать молекулы и перемещать их, этот эффект может быть полезен, например, для отделения одних молекул от других, для поиска нужных молекул в биологических исследованиях. 

Часть исследований ученых была поддержана грантами Российского фонда фундаментальных исследований.  

Источники

Издательство Springer выпустило книгу ученых ТПУ о фотонном крючке
Служба новостей ТПУ (news.tpu.ru), 07/04/2021

Похожие новости

  • 05/04/2021

    В ТГУ открыли дизайн-центр по разработке современных систем связи 5G

    В Томском государственном университете на базе НОЦ «Инжиниринговый центр «СВЧ техники и технологии» при участии промышленного партнера АО «НПП «Радар ммс» открыли дизайн-центр «Вертикаль». Там будут заниматься разработкой доверенной аппаратуры для телекоммуникационных систем, в том числе для сетей мобильной связи поколения 5G.
    495
  • 07/09/2016

    ТПУ начнет коммерческие поставки фосфора-32 для биохимиков и онкологов

    ​Томский политехнический университет (ТПУ), который организовал единственное в России производство дефицитного радиоактивного изотопа фосфора-32, начнет коммерческие поставки этого препарата в следующем году, сообщил директор Физико-технического института ТПУ Олег Долматов.
    1480
  • 29/04/2021

    Работа ведущего научного сотрудника Института высоких технологий ИРНИТУ представлена на обложке авторитетного международного журнала

    В журнале Journal of Materials Chemistry C, выпускаемом Королевским химическим обществом (Великобритания), опубликована статья, выполненная с участием ведущего научного сотрудника Института высоких технологий ИРНИТУ Андрея Львова.
    332
  • 25/06/2021

    Специалисты России и Германии обсудили, как обеспечить контроль ИИ

    ​Российские и немецкие специалисты в области информационных технологий в рамках воркшопа «Искусственный интеллект и право» обсудили ряд актуальных проблем, связанных с использованием ИИ в разных сферах человеческой жизни.
    531
  • 11/04/2017

    Томские ученые в ЦЕРНе сузили зону поиска частицы-посредника между видимой и невидимой Вселенной

    ​Ученым Физико-технического института Томского политехнического университета и их коллегам из Европейского центра ядерных исследований (ЦЕРН) за год удалось примерно на 25% сузить зону поиска темного фотона — частицы-посредника между видимым миром и темной материей — невидимой частью нашей Вселенной, влияющей на движение звезд и галактик.
    1935
  • 23/04/2021

    Быстро к делу: водородный консорциум собрал ключевые органы управления

    Развитие новой энергетики и, в частности, водородных технологий – один из приоритетов страны, сказал Владимир Путин в послании к Федеральному Собранию. Как раз накануне прошло заседание наблюдательного совета Консорциума водородных технологий, и Томск на нем назвали "движком" повестки.
    668
  • 11/10/2016

    Алмазы, выращиваемые в ТПУ, могут быть использованы для Большого адронного коллайдера

    ​Ученые лондонского университета Роял Холлоуэй (Royal Holloway, University of London, RHUL) предложили разработать новые датчики для Большого адронного коллайдера на основе тонких алмазных пленок, выращиваемых в Томском политехническом университете.
    2519
  • 17/03/2021

    «Начинку» датчиков для беспилотников и высокочувствительный прибор для измерения разности напряжений разработали в ТПУ аспиранты из Вьетнама

    Электронные компоненты датчиков для автономной навигации беспилотников и высокочувствительный прибор для измерения разности напряжений разработали в Томском политехническом университете молодые ученые из Вьетнама Ло Ван Хао и Буй Дык Бьен.
    461
  • 25/10/2016

    Томский аспирант улучшит диагностику мощнейшего в мире синхротрона

    ​Аспирант Физико-технического института Томского политеха Артем Новокшонов вместе с учеными Научной Лаборатории DESY (Германия) работает над улучшением и тестированием новых методик диагностики электронного пучка синхротрона PETRA III - одного из мощнейших источников синхротронного и рентгеновского излучения в мире.
    2259
  • 29/12/2020

    Дмитрий Седнев: «Наша школа играет роль интегратора»

    ​Директор Инженерной школы неразрушающего контроля и безопасности ТПУ Дмитрий Седнев поделился результатами, которых достиг коллектив школы в 2020 году, и рассказал о целях и задачах на будущий год.
    1113