Коллективом авторов из Новосибирского государственного университета, Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ) и Самарского национального исследовательского университета имени академика С. П. Королёва (Самарского университета) разработаны, изготовлены и исследованы дифракционные оптические элементы для управления терагерцовым излучением, которые позволяют формировать пучки заданного модового состава или фокусировать энергию излучения в заданные двух- и трехмерные области. Создание таких элементов позволит решать задачи дистанционного зондирования объектов, передачи информации в терагерцовом диапазоне и обработки материалов с помощью мощного терагерцового излучения.

Кремниевый бинарный дифракционный оптический элемент

Терагерцовое излучение — вид электромагнитного излучения, спектр которого находится в диапазоне 1011–1013 Гц, между видимым (оптическим) излучением и радиодиапазоном. Длина волны в терагерцовом диапазоне составляет 30–3000 мкм (3×10-5–3×10-3 м)

В конце прошлого года исследователи из НГУ, ИЯФ, Института систем обработки изображений РАН (Самара) и Самарского университета первыми в мире получили закрученные бесселевы пучки в терагерцовом диапазоне и впервые использовали их для формирования поверхностных электромагнитных волн на поверхности металла. Эта работа явилась одним из результатов сотрудничества новосибирских и самарских учёных в области создания и исследования дифракционных оптических элементов для управления пучками терагерцового излучения и формирования заданного пространственного распределения энергии этого излучения.

Совместные исследования учёных НГУ и Самарского университета оказались плодотворными благодаря сотрудничеству с Институтом ядерной физики СО РАН, где находится самый мощный в мире на сегодняшний день терагерцовый лазер на свободных электронах (НЛСЭ).

► Разработкой дифракционных оптических элементов (ДОЭ) для ультрафиолетового, видимого и инфракрасного диапазонов в Самарском университете (ранее — СГАУ) занимаются с начала 1980-х годов. Преимуществами дифракционных оптических элементов перед элементами традиционной оптики являются уменьшенные массогабаритные характеристики и более широкие функциональные возможности.


В июньском номере издания Journal of Modern Optics вышла статья Focusing of Novosibirsk Free Electron Laser (NovoFEL) radiation into paraxial segment, в которой изложены результаты исследования фокусировки пучка терагерцового излучения Новосибирского лазера на свободных электронах на длине волны 141 мкм с помощью кремниевого дифракционного оптического элемента в протяженный объем цилиндрической формы.

Кремниевый бинарный (двухуровневый) дифракционный оптический элемент был рассчитан и изготовлен с помощью технологии реактивно-ионного травления в Научно-образовательном центре нанотехнологий Самарского университета. Специальное антиотражающее полимерное покрытие для уменьшения потерь на отражение было разработано и нанесено на поверхность элемента специалистами компании «Тидекс» (Санкт-Петербург). 

— Созданный дифракционный оптический элемент позволяет формировать цилиндрический протяженный световой пучок для зондирования объектов сложной формы с высоким пространственным разрешением, — отмечает заведующий научно-исследовательской лабораторией прикладной электродинамики НГУ, главный научный сотрудник Института ядерной физики СО РАН, доктор физико-математических наук, профессор Борис Князев.

Учёный подчеркивает, что решение задачи управления пучками терагерцового излучения имеет большое значение для создания возможных приложений — лазерных радаров, телекоммуникационных систем терагерцового диапазона и лазерных технологических установок.

 

По словам Бориса Князева, направление интенсивно развивается: разрабатываются различные технологии создания дифракционных оптических элементов — от реактивно-ионного травления кремния до формирования микрорельефа на поверхности кремния с помощью лазерной абляции, или испарения (такая технология разработана в московском Институте общей физики РАН).

Похожие новости

  • 25/05/2017

    Большой адронный коллайдер возобновил сбор данных

    На Большом адронном коллайдере (БАК) закончились технические работы и модернизация — он возобновил сбор данных, в трех экспериментах на коллайдере участвуют исследователи НГУ и ИЯФ СО РАН. Планируемая остановка на технические работы на БАК случается в начале каждого года.
    1957
  • 26/08/2016

    Ученые СО РАН представили результаты работы на Международной конференции в области высоких энергий

    ​Специалисты Новосибирского государственного университета и Института ядерной физики им. Г. И. Будкера СО РАН приняли участие в 38-й Международной конференции в области физики высоких энергий в Чикаго (ICHEP-2016).
    3071
  • 27/04/2016

    Руководитель радиационного центра ИЯФ СО РАН - об электронной пастеризации продуктов

    Радиационный центр Института ядерной физики СО РАН и Новосибирского государственного университета был открыт в июле 2014 года. С начала 2016 года на территории России и ряда стран СНГ разрешено использовать холодную электронную пастеризацию пищевых продуктов.
    2949
  • 11/08/2016

    НГУ ответил на «Вызов инноватора»

    ​Новосибирский госуниверситет представил свои научные достижения в рамках флешмоба «Вызов инноватора», участниками которого стали ведущие вузы России. По замыслу флешмоба, запущенного Министерством образования и науки России, университеты должны публиковать в соцсетях видео о своих научных достижениях ― эстафета передается от одного вуза к другому.
    1740
  • 15/08/2019

    Эксперимент Belle II пройдет с участием ученых Академгородка

    ​Эксперимент Belle II — это один из экспериментов в физике высоких энергий, работающий на передовых рубежах современной науки. Данные, полученные в результате эксперимента, позволят проверить предсказания Стандартной модели для вероятностей редких распадах B- и D-мезонов и t-лептона, улучшить точность измерения параметров нарушения симметрии между веществом и антивеществом и, возможно, обнаружить проявления новой физики.
    392
  • 12/05/2016

    Ученые представили результаты анализа всех доступных данных по измерению осцилляций Bs-мезонов

    Коллектив ученых из эксперимента LHCb на Большом адронном коллайдере, в состав которого входит группа из Новосибирского государственного университета и Института ядерной физики СО РАН, выяснил, с какой вероятностью B0s-мезон, состоящий из прелестного антикварка и странного кварка, превращается в свою античастицу и наоборот.
    1610
  • 26/07/2019

    Новосибирские ученые поучаствовали в эксперименте на Большом адронном коллайдере

    ​Сотрудники совместной лаборатории Института ядерной физики СО РАН и НГУ принимают участие в одном из двух самых больших экспериментов, ведущих набор и анализ данных при столкновениях пучков протонов сверхвысоких энергий в Большом адронном коллайдере, расположенном в ЦЕРНе (Европейском центре по физике высоких энергий).
    421
  • 19/09/2019

    НГУ и ИЯФ СО РАН представили на форуме «Технопром» инновационную методику лечения рака

    ​​C 18 сентября в рамках VII Международного форума технологического развития «Технопром» Новосибирский государственный университет и Институт ядерной физики им. Г. И. Будкера представят стенд, посвященный совместной работе центра бор-нейрозахватной терапии онкологических заболеваний.
    469
  • 27/04/2017

    «Фотоника и квантовые оптические технологии» на МНСК-2017

    «Фотоника и квантовые оптические технологии» — такая секция впервые была организована в рамках 55-ой Международной научной студенческой конференции, которая прошла 16-20 апреля в НГУ. Исследования и разработки в направлениях науки и техники, связанных с генерацией и распространением квантов света (фотонов), управлением ими, изучением и использованием их взаимодействия с веществом, бурно развиваются во всем мире, а результаты этих работ быстро выходят на рынок в виде высоковостребованных устройств и технологий - систем сверхбыстрой оптической связи, промышленных лазеров, биомедицинского лазерного оборудования, метрологических и сенсорных устройств, и многих других.
    2808
  • 30/11/2018

    Школа юного физика «Архимед» для старшеклассников

    ​Школа юного физика «Архимед» приглашает старшеклассников провести зимние каникулы нестандартно, интересно и полезно. Ежегодная зимняя школа пройдёт с 8 по 12 января. Здесь ребята, увлечённые физикой, познакомятся с современными достижениями в этой научной области.
    1481