​​Специалисты Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) и Новосибирского государственного университета (НГУ) совместно с коллегами из Самарского национального исследовательского университета имени академика С.П. Королева (СУ) и Научно-технологического центра уникального приборостроения Российской академии наук (НТЦ УП РАН) проводят фундаментальные исследования, направленные на изучение возможности формирования комбинации поверхностных плазмон-поляритонов (взаимосвязанных колебаний электронов металла и электрического поля вблизи поверхности раздела), распространяющихся вдоль поверхности цилиндрического проводника и вращающихся с разной скоростью по или против часовой стрелки. В случае успешного решения этой задачи в будущем могут быть созданы мультиплексные (многоканальные) коммуникационные устройства, несущие по одной линии несколько сигналов на одной частоте. «Закрученные» плазмоны могут быть использованы также для диагностики материалов и создания различных сенсоров. Промежуточные результаты – теоретические расчеты возбуждения плазмонов на металлических решетках – были представлены на конкурсе молодых ученых ИЯФ СО РАН на секции «Синхротронное излучение». Работы выполняются при поддержке гранта РНФ

поляритон.png Схематическое изображение поверхностных плазмон-поляритонов. Иллюстрация предоставлена О. Камешковым​ 

Коллаборация ИЯФ СО РАН, НГУ, СУ и НТЦ УП РАН проводит исследования в области плазмоники – науки о взаимодействии света с металлическими и полупроводниковыми структурами и технологиях, использующих поверхностные плазмон-поляритоны. Плазмоны – это коллективные колебания электронов в металле, представленном как газ электронов. Колебания такого газа, связанные с фотонами (элементарными колебаниями света), называют плазмон-поляритонами. Поверхностные плазмон-поляритоны (ППП), квазичастицы, энергия которых складывается из энергии электронов металла и энергии фотонов, распространяются со скоростью близкой к скорости света вдоль поверхности проводника. Такие квазичастицы играют важную роль во многих явлениях, связанных с взаимодействием электромагнитного излучения с поверхностью. Зависимость характеристик ППП от свойств проводника и состояния поверхности позволяет использовать плазмон-поляритоны для развития коммуникационных технологий, диагностики материалов и создания биологических и оптических сенсоров. 

«Наши исследования направлены на изучение возможности формирования вращающихся плазмон-поляритонов. Плазмон-поляритоны исследуются и используются в различных приложениях достаточно давно, но до сих пор никто не получал и не исследовал закрученные ППП, – рассказал главный научный сотрудник ИЯФ СО РАН, заведующий лабораторией НГУ, профессор, доктор физико-математических наук Борис Князев. – Ранее нашей исследовательской группой, используя Новосибирский лазер на свободных электронах (ЛСЭ), входящий в инфраструктуру Центра коллективного пользования «Сибирский центр синхротронного и терагерцового излучения» (ЦКП СЦСТИ), были получены закрученные пучки в свободном пространстве. Мы предложили формировать закрученные плазмон-поляритоны, направляя на торец провода закрученные пучки ЛСЭ. Если научиться формировать такие плазмоны, собирать их вместе на одном проводе, а затем, после прохождения ими линии передачи, снова разделять их, то можно создать мультиплексную линию плазмонной связи, по которой на одной частоте распространяется сразу несколько сигналов».  

Как пояснил Борис Князев, телевизионный сигнал, например, передается электромагнитными волнами в свободном пространстве на многих частотах: у каждого телевизионного канала своя частота, которую излучает и принимает широкополосная антенна. 

«Благодаря свойствам вращающихся плазмон-поляритонов все сигналы можно передавать вдоль проводника на одной частоте. Первым шагом на долгом пути к решению этой задачи является создание экспериментальных устройств для формирования закрученных плазмон поляритонов», – добавил специалист. 

Разработка устройств для формирования закрученных плазмон-поляритонов на Новосибирском ЛСЭ в терагерцовом диапазоне частот и проведение экспериментов по исследованию их свойств была целью магистерской диссертации магистранта физического факультета НГУ (ФФ НГУ) Олега Камешкова. Промежуточные результаты исследования – теоретические расчеты генерации плазмонов – он представил на конкурсе молодых ученых ИЯФ СО РАН на секции «Синхротронное излучение». Работа Олега Камешкова заняла первое место. 

«В работе исследовались базовые элементы плазмоники – дифракционные и субволновые решетки. Умение правильно анализировать, рассчитывать и производить данные элементы открывает широкие возможности для реализации сложных плазмонных устройств: детекторов, каплеров (устройств для преобразования свободной волны в поверхностную), сенсоров, фильтров, – рассказал обладатель стипендии имени академика С.Т. Беляева, присуждаемой ИЯФ СО РАН, а также стипендии Губернатора Новосибирской области имени М. А. Лаврентьева Олег Камешков. – На данный момент были проведены расчетные работы по оптимизации двух схем формирования плазмон-поляритонов, и теперь полученные результаты необходимо проверить экспериментально на ЛСЭ. В нашем исследовании есть как прикладные, так и фундаментальные задачи. С практической точки зрения, мы хотим научиться изготовлять каплеры и биологические сенсоры. Использование плазмонных устройств в терагерцовом диапазоне может быть интересно биологам для анализа органических веществ, поскольку именно в нем лежат многочисленные колебательные моды макромолекул, таких как протеины или ДНК. Один из фундаментальных вопросов, на который мы хотим найти ответ – как возбудить на проводе поверхностные плазмон-поляритоны с орбитальным угловым моментом, и сохраняется ли их орбитальный момент при распространении вдоль провода».​ 

Результаты работы Олега Камешкова будут представлены им на международной конференции «Synchrotron and Free electron laser Radiation»: generation and application», которая пройдет в Новосибирске в ИЯФ СО РАН 13 – 16 июля 2020 г. 

По словам Бориса Князева, проект объединил специалистов из разных организаций, обладающих необходимыми компетенциями для успешной работы. «Наше исследование носит мультидисциплинарный характер. Каждая организация: ИЯФ СО РАН, НГУ, СУ и НТЦ УП РАН вносит свой вклад. Например, специалисты из СУ создают дифракционные оптические элементы, которые позволяют формировать закрученные пучки, НТЦ УП РАН – специалисты по поверхностным плазмонам, НГУ и ИЯФ СО РАН имеют необходимую аппаратуру и большой опыт работы на Новосибирском лазере на свободных электронах. Только объединившись в одну команду, мы смогли получить грант РНФ и вести эту перспективную работу», – добавил Борис Князев.​ 

Центр коллективного пользования «Сибирский центр синхротронного и терагерцового излучения» ИЯФ СО РАН специализируется на фундаментальных и прикладных работах, связанных с использованием пучков синхротронного и терагерцового излучения, на разработке и создании экспериментальной аппаратуры и оборудования для таких работ, на разработке и создании специализированных источников синхротронного и терагерцового излучения. Ежегодно в Центре работают десятки российских и зарубежных организаций. ​

Похожие новости

  • 16/09/2016

    Российские ученые создали прибор для измерения длины сгустка частиц в ускорите

    ​Ученые Института ядерной физики им. Г.И. Будкера СО РАН (ИЯФ СО РАН) и Института общей физики им. А.М. Прохорова РАН (ИОФ РАН) при поддержке гранта РНФ разработали новое поколение высокоскоростных электронно-оптических приборов для диагностики пучков в ускорителях заряженных частиц - диссектор на основе стрик-камеры.
    2388
  • 04/02/2019

    Итоги совместного конкурса РФФИ— Национальный центр научных исследований Франции 2019 г (конкурс НЦНИ_а)

    ​На конкурс было подано 68 заявок. По результатам экспертизы, проведенной независимо российской и зарубежными сторонами, поддержано 19 проектов. Код конкурса: (НЦНИ_а) Совместный конкурс с НЦНИ Франции.
    1445
  • 17/03/2017

    Сибирские физики создадут точнейшие атомные часы

    Ученые из Института лазерной физики Сибирского отделения Российской академии наук, Новосибирского государственного университета и из Новосибирского государственного технического университета разработали сверхстабильный лазер для атомных часов, который позволит российским физикам создать устройства для измерения времени, не уступающие в точности западным аналогам, говорится в статье, опубликованной в Journal of Physics: Conf.
    2758
  • 04/08/2017

    Новосибирские ученые исследуют новые типы волоконных лазеров для линий связи

    Ученые НГУ, выигравшие грант Российского научного фонда (РНФ), намерены создать новый тип волоконных лазеров для высокоскоростных линий связи. Успешная реализация проекта позволит применить разработанные лазеры в качестве задающих источников информационного сигнала в телекоммуникационных системах на основе суперканалов.
    2556
  • 15/11/2018

    Мегагранты: две стороны медали

    Четыре года назад Российский научный фонд объявил конкурс мегагрантов для научных учреждений страны. В список из 16 победителей конкурса вошли и два института Новосибирского научного центра – Институт ядерной физики СО РАН и Институт археологии и этнографии СО РАН.
    1376
  • 03/01/2017

    Новосибирские ученые научились имитировать «темную материю»

    ​Ученые Института ядерной физики им. Г.И. Будкера СО РАН научились моделировать взаимодействие гипотетической "темной материи" с обычным веществом, сообщил замдиректора ИЯФ Юрий Тихонов.
    1870
  • 08/11/2017

    Опубликованы итоги трех международных конкурсов РФФИ

     Итоги совместного конкурса РФФИ — Австрийский научный фонд 2017 г. (конкурс АНФ_а). На конкурс была подана 20 заявок. По результатам экспертизы, проведенной независимо российской и зарубежными сторонами, поддержано 2 проекта.
    1873
  • 19/11/2015

    ИЯФ СО РАН завершил набор в стипендиальную программу 2015 года

    ​Завершился очередной набор в стипендиальную программу Института ядерной физики им. Г.И.Будкера СО РАН. В этом году конкурс прошли 23 школьника из Специализированного учебно-научного центра НГУ (СУНЦ НГУ, ФМШ) и 4 студента Новосибирского государственного университета (НГУ).
    3067
  • 10/07/2016

    Подведены итоги совместного конкурса РНФ и DFG

    ​​После сопоставления результатов независимой экспертизы РНФ и DFG были определены победители конкурса на поддержку фундаментальных и поисковых исследований международных научных групп в области физики, космоса и математики.
    2019
  • 02/04/2019

    Гранты РНФ-2019: победители конкурсов на продление проектов 2016 года и конкурса для отдельных научных групп 2019 года

    ​Российский научный фонд объявил победителей двух конкурсов: на продление проектов, реализация которых завершилась в 2018 году, и конкурса для отдельных научных групп с началом финансирования в 2019 году.
    3133